558 research outputs found
A Resolved Debris Disk Around the Candidate Planet-hosting Star HD 95086
Recently, a new planet candidate was discovered on direct images around the young (10-17 Myr) A-type star HD 95086. The strong infrared excess of the system indicates that, similar to HR8799, Beta Pic, and Fomalhaut, the star harbors a circumstellar disk. Aiming to study the structure and gas content of the HD 95086 disk, and to investigate its possible interaction with the newly discovered planet, here we present new optical, infrared, and millimeter observations. We detected no CO emission, excluding the possibility of an evolved gaseous primordial disk. Simple blackbody modeling of the spectral energy distribution suggests the presence of two spatially separate dust belts at radial distances of 6 and 64 AU. Our resolved images obtained with the Herschel Space Observatory reveal a characteristic disk size of approx. 6.0 5.4 (540 490 AU) and disk inclination of approx 25 deg. Assuming the same inclination for the planet candidate's orbit, its reprojected radial distance from the star is 62 AU, very close to the blackbody radius of the outer cold dust ring. The structure of the planetary system at HD 95086 resembles the one around HR8799. Both systems harbor a warm inner dust belt and a broad colder outer disk and giant planet(s) between the two dusty regions. Modeling implies that the candidate planet can dynamically excite the motion of planetesimals even out to 270 AU via their secular perturbation if its orbital eccentricity is larger than about 0.4. Our analysis adds a new example to the three known systems where directly imaged planet(s) and debris disks coexist
Role of baryonic resonances in the dilepton emission in nucleon-nucleon collisions
Within an effective Lagrangian model, we present calculations for cross
sections of the dilepton production in proton-proton and proton-neutron
collisions at laboratory kinetic energies in 1-5 GeV range. Production
amplitudes include contributions from the nucleon-nucleon bremsstrahlung as
well as from the mechanism of excitation, propagation, and radiative decay of
Delta(1232) and N*(1520) intermediate baryonic resonances. It is found that the
delta isobar terms dominate the cross sections in the entire considered beam
energy range. Our calculations are able to explain the data of the DLS
collaboration on the dilepton production in proton-proton collisions for beam
energies below 1.3 GeV. However, for incident energies higher than this the
inclusion of contributions from other dilepton sources like Dalitz decay of pi0
and eta mesons, and direct decay of rho and omega mesons is necessary to
describe the data.Comment: 22 pages, 7 figures, more details of the calculations added, version
to appear in Phys. Rev
Relativistic quantum transport theory of hadronic matter: the coupled nucleon, delta and pion system
We derive the relativistic quantum transport equation for the pion
distribution function based on an effective Lagrangian of the QHD-II model. The
closed time-path Green's function technique, the semi-classical, quasi-particle
and Born approximation are employed in the derivation. Both the mean field and
collision term are derived from the same Lagrangian and presented analytically.
The dynamical equation for the pions is consistent with that for the nucleons
and deltas which we developed before. Thus, we obtain a relativistic transport
model which describes the hadronic matter with , and degrees
of freedom simultaneously. Within this approach, we investigate the medium
effects on the pion dispersion relation as well as the pion absorption and pion
production channels in cold nuclear matter. In contrast to the results of the
non-relativistic model, the pion dispersion relation becomes harder at low
momenta and softer at high momenta as compared to the free one, which is mainly
caused by the relativistic kinetics. The theoretically predicted free cross section is in agreement with the experimental data. Medium
effects on the cross section and momentum-dependent
-decay width are shown to be substantial.Comment: 66 pages, Latex, 12 PostScript figures included; replaced by the
revised version, to appear in Phys. Rev.
Gastrointestinal stromal tumor of the anal canal: an unusual presentation
BACKGROUND: Gastrointestinal stromal tumors (GIST) of the stomach are the most frequent followed by those of the intestinal tract, while colon and rectum represent rare sites. GIST of the anal canal are extremely rare. They have been studied along with GIST of the rectum, as a single entity, and along with them they represent 5% of GIST. GIST arising from the anal canal account for only 2%–8% of the anorectal GIST. Thus anal GIST must be considered an exceptional case. CASE PRESENTATION: A 78-year-old man was referred to our Institution for an anal mass, in absence of any symptom. The patient was treated by local excision. An histological diagnosis of a low grade GIST was made. No further treatment was necessary. No local recurrence of distant metastases were found at follow-up. CONCLUSION: At the moment, only ten cases of c-kit positive anal GIST are reported in the literature. These few data are not sufficient to establish a widely accepted approach for this neoplasia. We recommend to perform an initial local excision, to define the risk of aggressive behavior and the resection margins and proceed to a more aggressive treatment, if the GIST belongs to high or very high risk group. The role of adjuvant therapy is still uncertain. Although inhibitors of tyrosine-kinase receptor needs further studies before their routine use, their role in case of distant or local recurrence has been accepted. Patients' close follow up is mandatory to disclose as soon as possible local recurrences or metastases
Spallation reactions. A successful interplay between modeling and applications
The spallation reactions are a type of nuclear reaction which occur in space
by interaction of the cosmic rays with interstellar bodies. The first
spallation reactions induced with an accelerator took place in 1947 at the
Berkeley cyclotron (University of California) with 200 MeV deuterons and 400
MeV alpha beams. They highlighted the multiple emission of neutrons and charged
particles and the production of a large number of residual nuclei far different
from the target nuclei. The same year R. Serber describes the reaction in two
steps: a first and fast one with high-energy particle emission leading to an
excited remnant nucleus, and a second one, much slower, the de-excitation of
the remnant. In 2010 IAEA organized a worskhop to present the results of the
most widely used spallation codes within a benchmark of spallation models. If
one of the goals was to understand the deficiencies, if any, in each code, one
remarkable outcome points out the overall high-quality level of some models and
so the great improvements achieved since Serber. Particle transport codes can
then rely on such spallation models to treat the reactions between a light
particle and an atomic nucleus with energies spanning from few tens of MeV up
to some GeV. An overview of the spallation reactions modeling is presented in
order to point out the incomparable contribution of models based on basic
physics to numerous applications where such reactions occur. Validations or
benchmarks, which are necessary steps in the improvement process, are also
addressed, as well as the potential future domains of development. Spallation
reactions modeling is a representative case of continuous studies aiming at
understanding a reaction mechanism and which end up in a powerful tool.Comment: 59 pages, 54 figures, Revie
Wearable high-performance pressure sensors based on three-dimensional electrospun conductive nanofibers
Polymer-based pressure sensors play a key role in realizing lightweight and inexpensive wearable devices for healthcare and environmental monitoring systems. Here, conductive core/shell polymer nanofibers composed of poly (vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP)/poly(3,4-ethylenedioxythiophene) (PEDOT) are fabricated using three-dimensional (3D) electrospinning and vapor deposition polymerization methods, and the resulting sponge-like 3D membranes are used to create piezoresistive-type pressure sensors. Interestingly, the PEDOT shell consists of well-dispersed spherical bumps, leading to the formation of a hierarchical conductive surface that enhances the sensitivity to external pressure. The sponge-like 3D mats exhibit a much higher pressure sensitivity than the conventional electrospun 2D mats due to their enhanced porosity and pressure-tunable contact area. Furthermore, large-area, wireless, 16 x 10 multiarray pressure sensors for the spatiotemporal mapping of multiple pressure points and wearable bands for monitoring blood pressure have been fabricated from these 3D mats. To the best of our knowledge, this is the first report of the fabrication of electrospun 3D membranes with nanoscopically engineered fibers that can detect changes in external pressure with high sensitivity. The developed method opens a new route to the mass production of polymer-based pressure sensors with high mechanical durability, which creates additional possibilities for the development of human-machine interfaces.11Ysciescopu
Selective formation of tungsten nanowires
We report on a process for fabricating self-aligned tungsten (W) nanowires with polycrystalline silicon core. Tungsten nanowires as thin as 10 nm were formed by utilizing polysilicon sidewall transfer technology followed by selective deposition of tungsten by chemical vapor deposition (CVD) using WF6 as the precursor. With selective CVD, the process is self-limiting whereby the tungsten formation is confined to the polysilicon regions; hence, the nanowires are formed without the need for lithography or for additional processing. The fabricated tungsten nanowires were observed to be perfectly aligned, showing 100% selectivity to polysilicon and can be made to be electrically isolated from one another. The electrical conductivity of the nanowires was characterized to determine the effect of its physical dimensions. The conductivity for the tungsten nanowires were found to be 40% higher when compared to doped polysilicon nanowires of similar dimensions
Tumor markers in breast cancer - European Group on Tumor Markers recommendations
Recommendations are presented for the routine clinical use of serum and tissue-based markers in the diagnosis and management of patients with breast cancer. Their low sensitivity and specificity preclude the use of serum markers such as the MUC-1 mucin glycoproteins ( CA 15.3, BR 27.29) and carcinoembryonic antigen in the diagnosis of early breast cancer. However, serial measurement of these markers can result in the early detection of recurrent disease as well as indicate the efficacy of therapy. Of the tissue-based markers, measurement of estrogen and progesterone receptors is mandatory in the selection of patients for treatment with hormone therapy, while HER-2 is essential in selecting patients with advanced breast cancer for treatment with Herceptin ( trastuzumab). Urokinase plasminogen activator and plasminogen activator inhibitor 1 are recently validated prognostic markers for lymph node-negative breast cancer patients and thus may be of value in selecting node-negative patients that do not require adjuvant chemotherapy. Copyright (C) 2005 S. Karger AG, Basel
Airway branching morphogenesis in three dimensional culture
To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldBACKGROUND: Lungs develop from the fetal digestive tract where epithelium invades the vascular rich stroma in a process called branching morphogenesis. In organogenesis, endothelial cells have been shown to be important for morphogenesis and the maintenance of organ structure. The aim of this study was to recapitulate human lung morphogenesis in vitro by establishing a three dimensional (3D) co-culture model where lung epithelial cells were cultured in endothelial-rich stroma. METHODS: We used a human bronchial epithelial cell line (VA10) recently developed in our laboratory. This cell line cell line maintains a predominant basal cell phenotype, expressing p63 and other basal markers such as cytokeratin-5 and -14. Here, we cultured VA10 with human umbilical vein endothelial cells (HUVECs), to mimic the close interaction between these cell types during lung development. Morphogenesis and differentiation was monitored by phase contrast microscopy, immunostainings and confocal imaging. RESULTS: We found that in co-culture with endothelial cells, the VA10 cells generated bronchioalveolar like structures, suggesting that lung epithelial branching is facilitated by the presence of endothelial cells. The VA10 derived epithelial structures display various complex patterns of branching and show partial alveolar type-II differentiation with pro-Surfactant-C expression. The epithelial origin of the branching VA10 colonies was confirmed by immunostaining. These bronchioalveolar-like structures were polarized with respect to integrin expression at the cell-matrix interface. The endothelial-induced branching was mediated by soluble factors. Furthermore, fibroblast growth factor receptor-2 (FGFR-2) and sprouty-2 were expressed at the growing tips of the branching structures and the branching was inhibited by the FGFR-small molecule inhibitor SU5402. DISCUSSION: In this study we show that a human lung epithelial cell line can be induced by endothelial cells to form branching bronchioalveolar-like structures in 3-D culture. This novel model of human airway morphogenesis can be used to study critical events in human lung development and suggests a supportive role for the endothelium in promoting branching of airway epithelium
- …