204 research outputs found

    Common and Segregated Processing of Observed Actions in Human SPL

    Get PDF
    To clarify the functional organization of parietal cortex involved in action observation, we scanned subjects observing 3 widely different classes of actions: Manipulation with the hands, locomotion, and climbing. An effector-based organization predicts that parietal regions involved in the observation of climbing should not differ from those involved in observing manipulation and locomotion, opposite to the prediction of an organization based upon the action performed. Compared with individual controls, the observation of climbing evoked activity in dorsal superior parietal lobule (SPL), extending into precuneus and posterior cingulate sulcus. Observation of locomotion differentially activated similar regions less strongly. Observation of manipulation activated ventro-rostral SPL, including putative human AIP (phAIP). Using interaction testing and exclusive masking to directly compare the parietal regions involved in observing the 3 action classes, relative to the controls, revealed that the rostral part of dorsal SPL was specifically involved in observing climbing and phAIP in observing manipulation. Parietal regions common to observing all 3 action classes were restricted and likely reflected higher order visual processing of body posture and 3D structure from motion. These results support a functional organization of some parietal regions involved in action observation according to the type of action in the case of climbing and manipulation

    The Extraction of Depth Structure from Shading and Texture in the Macaque Brain

    Get PDF
    We used contrast-agent enhanced functional magnetic resonance imaging (fMRI) in the alert monkey to map the cortical regions involved in the extraction of 3D shape from the monocular static cues, texture and shading. As in the parallel human imaging study [1], we contrasted the 3D condition to several 2D control conditions. The extraction of 3D shape from texture (3D SfT) involves both ventral and parietal regions, in addition to early visual areas. Strongest activation was observed in CIP, with decreasing strength towards the anterior part of the intraparietal sulcus (IPS). In the ventral stream 3D SfT sensitivity was observed in a ventral portion of TEO. The extraction of 3D shape from shading (3D SfS) involved predominantly ventral regions, such as V4 and a dorsal potion of TEO. These results are similar to those obtained earlier in human subjects and indicate that the extraction of 3D shape from texture is performed in both ventral and dorsal regions for both species, as are the motion and disparity cues, whereas shading is mainly processed in the ventral stream

    Anterior Intraparietal Area: a Hub in the Observed Manipulative Action Network.

    Get PDF
    Current knowledge regarding the processing of observed manipulative actions (OMAs) (e.g., grasping, dragging, or dropping) is limited to grasping and underlying neural circuitry remains controversial. Here, we addressed these issues by combining chronic neuronal recordings along the anteroposterior extent of monkeys\u2019 anterior intraparietal (AIP) area with tracer injections into the recorded sites. We found robust neural selectivity for 7 distinct OMAs, particularly in the posterior part of AIP (pAIP), where it was associated with motor coding of grip type and own-hand visual feedback. This cluster of functional properties appears to be specifically grounded in stronger direct connections of pAIP with the temporal regions of the ventral visual stream and the prefrontal cortex, as connections with skeletomotor related areas and regions of the dorsal visual stream exhibited opposite or no rostrocaudal gradients. Temporal and prefrontal areas may provide visual and contextual information relevant for manipulative action processing. These results revise existing models of the action observation network, suggesting that pAIP constitutes a parietal hub for routing information about OMA identity to the other nodes of the network

    Retinotopic mapping in awake monkeys suggests a different functional organization for dorsal and ventral V4

    Get PDF
    Using functional magnetic resonance imaging, we mapped the retinotopic organization throughout the visual cortex of fixating monkeys. The observed retinotopy in V1, V2 and V3 was completely consistent with the classical view. More rostrally in occipital cortex, both areas V3A and MT/V5 had a lower and upper visual field representation split by a horizontal meridian. Both areas were almost completely surrounded by a vertical meridian representa- tion. Ventral, but not dorsal V4 was rostrally bordered by a horizontal meridian. Furthermore, contrary to all other early visual areas including V4v, the eccentricity lines ran almost parallel to the areal boundaries in V4d. These results suggest a different functional organization in dorsal and ventral V4, similar to what has been observed in human
    • …
    corecore