9 research outputs found

    The ultimate preoperative C-reactive protein-to-albumin ratio is a prognostic factor for survival after pancreatic cancer resection

    Get PDF
    Background: Emerging evidence indicates that an elevated C-reactive protein-to-albumin ratio (CAR) may be associated with a poor prognosis in pancreatic ductal adenocarcinoma (PDAC). Further evidence showing that this ratio has significant prognostic value could contribute to current prediction models and clinical decision-making. Methods: Data were analysed of consecutive patients who underwent curative pancreatic resection between 2013 and 2018 and were histologically diagnosed with PDAC. We investigated the relation between the ultimate preoperative CAR and overall survival. Results: A total of 163 patients were analysed. Median overall survival was 18 months (IQR 9-36). Multivariate analysis demonstrated that a higher CAR (HR 1.745, P = 0.004), a higher age (HR 1.062, P < 0.001), male sex (HR 1.977, P = 0.001), poor differentiation grade (HR 2.812, P < 0.001), and positive para-aortic lymph node(s) (HR 4.489, P < 0.001) were associated with a lower overall survival. Furthermore, a CAR ≥ 0.2 was associated with decreased overall survival (16 vs. 26 months, P = 0.003). Conclusion: We demonstrated that an ultimate preoperative elevated CAR is an independent indicator of decreased overall survival after resection for PDAC. The preoperative CAR may be of additional value to the current prediction models

    Signet Ring Cell Carcinoma of the Ampulla of Vater:A Rare Histopathological Variant

    Get PDF
    Signet ring cell carcinoma (SRCC) of the ampulla of Vater is an extremely rare tumor. Our case describes a 45-year-old female presenting with jaundice and pruritus. Computed tomography, endoscopy, and endoscopic retrograde cholangiopancreatography showed a tumor of the ampulla of Vater without distant metastasis. Histological biopsy confirmed a malignant tumor with SRCC characteristics and immunohistochemical staining revealed a mixed type profile (both intestinal and pancreatobiliary characteristics). A pylorus-preserving pancreatoduodenectomy was performed and the patient recovered without complications. Pathology results concluded a pT2N0 ampullary SRCC. SRCC of the ampulla of Vater is known to be highly malignant. After 13 months of follow-up, our patient showed no signs of recurrence

    Genome-wide association of major depression: description of samples for the GAIN Major Depressive Disorder Study: NTR and NESDA biobank projects.

    Get PDF
    To identify the genomic regions that confer risk and protection for major depressive disorder (MDD) in humans, large-scale studies are needed. Such studies should collect multiple phenotypes, DNA, and ideally, biological material that allows gene expression analysis, transcriptomic, proteomic, and metabolomic studies. In this paper, we briefly review linkage studies of MDD and then describe the large-scale nationwide biological sample collection in Dutch twin families from the Netherlands Twin Register (NTR) and in participants in the Netherlands Study of Depression and Anxiety (NESDA). Within these studies, 1862 participants with a diagnosis of MDD and 1857 controls at low liability for MDD have been selected for genome-wide genotyping by the US Foundation for the National Institutes of Health Genetic Association Information Network. Stage 1 genome-wide association results are scheduled to be accessible before the end of 2007. Genome-wide association results are open-access and can be viewed at the dbGAP web portal (http://www.ncbi.nlm.nih.gov). Approved users can download the genotype and phenotype data, which have been made available as of 9 October 2007

    Collaboration around rare bone diseases leads to the unique organizational incentive of the Amsterdam Bone Center

    No full text
    In the field of rare bone diseases in particular, a broad care team of specialists embedded in multidisciplinary clinical and research environment is essential to generate new therapeutic solutions and approaches to care. Collaboration among clinical and research departments within a University Medical Center is often difficult to establish, and may be hindered by competition and non-equivalent cooperation inherent in a hierarchical structure. Here we describe the “collaborative organizational model” of the Amsterdam Bone Center (ABC), which emerged from and benefited the rare bone disease team. This team is often confronted with pathologically complex and under-investigated diseases. We describe the benefits of this model that still guarantees the autonomy of each team member, but combines and focuses our collective expertise on a clear shared goal, enabling us to capture synergistic and innovative opportunities for the patient, while avoiding self-interest and possible harmful competition

    Collaboration Around Rare Bone Diseases Leads to the Unique Organizational Incentive of the Amsterdam Bone Center

    No full text
    In the field of rare bone diseases in particular, a broad care team of specialists embedded in multidisciplinary clinical and research environment is essential to generate new therapeutic solutions and approaches to care. Collaboration among clinical and research departments within a University Medical Center is often difficult to establish, and may be hindered by competition and non-equivalent cooperation inherent in a hierarchical structure. Here we describe the “collaborative organizational model” of the Amsterdam Bone Center (ABC), which emerged from and benefited the rare bone disease team. This team is often confronted with pathologically complex and under-investigated diseases. We describe the benefits of this model that still guarantees the autonomy of each team member, but combines and focuses our collective expertise on a clear shared goal, enabling us to capture synergistic and innovative opportunities for the patient, while avoiding self-interest and possible harmful competition

    LifeTime and improving European healthcare through cell-based interceptive medicine

    Get PDF
    LifeTime aims to track, understand and target human cells during the onset and progression of complex diseases and their response to therapy at single-cell resolution. This mission will be implemented through the development and integration of single-cell multi-omics and imaging, artificial intelligence and patient-derived experimental disease models during progression from health to disease. Analysis of such large molecular and clinical datasets will discover molecular mechanisms, create predictive computational models of disease progression, and reveal new drug targets and therapies. Timely detection and interception of disease embedded in an ethical and patient-centered vision will be achieved through interactions across academia, hospitals, patient-associations, health data management systems and industry. Applying this strategy to key medical challenges in cancer, neurological, infectious, chronic inflammatory and cardiovascular diseases at the single-cell level will usher in cell-based interceptive medicine in Europe over the next decade.We would like to acknowledge all participants that have attended and contributed to LifeTime meetings and workshops through many exciting presentations and discussions. We thank Johannes Richers for artwork. LifeTime has received funding from the European Unionʼs Horizon 2020 research and innovation framework programme under Grant agreement 820431

    Genomic Designing for Climate-Smart Tomato

    No full text
    Tomato is the first vegetable consumed in the world. It is grown in very different conditions and areas, mainly in field for processing tomatoes while fresh-market tomatoes are often produced in greenhouses. Tomato faces many environmental stresses, both biotic and abiotic. Today many new genomic resources are available allowing an acceleration of the genetic progress. In this chapter, we will first present the main challenges to breed climate-smart tomatoes. The breeding objectives relative to productivity, fruit quality, and adaptation to environmental stresses will be presented with a special focus on how climate change is impacting these objectives. In the second part, the genetic and genomic resources available will be presented. Then, traditional and molecular breeding techniques will be discussed. A special focus will then be presented on ecophysiological modeling, which could constitute an important strategy to define new ideotypes adapted to breeding objectives. Finally, we will illustrate how new biotechnological tools are implemented and could be used to breed climate-smart tomatoes
    corecore