13 research outputs found

    Erfolgskontrolle von Hartholzauenwald-Aufforstungen in der Kliekener Aue

    Get PDF
    Hartholz-Auenwälder (Querco-Ulmetum minoris und weitere Vegetationseinheiten des Ulmenion) sind charakteristische Vegetationsgesellschaften entlang der großen Flussauen und wichtige Retentionsräume. Bedingt durch den Wechsel von Überflutung und Trockenheit sowie eine hohe standörtliche Dynamik und Heterogenität sind Hartholz-Auenwälder die struktur- und artenreichsten Lebensräume in Mitteleuropa. In früheren Jahrhunderten wurden viele Auenwälder zu Gunsten von Siedlungen und landwirtschaftlichen Nutzflächen gerodet, was eine erhebliche Verringerung des Flächenanteils der Auenwälder zur Folge hatte. Die verbliebenen Hartholz-Auenwälder wurden im 19. Jahrhundert durch zahlreiche wasserbaulichen Maßnahmen beeinträchtigt. Angesichts der hohen naturschutzfachlichen Bedeutung regelmäßig überfluteter Hartholz-Auenwälder und ihres heute geringen Flächenanteiles ist deren Erhaltung, Entwicklung und Erweiterung ein wesentliches Ziel des Naturschutzes in Flusslandschaften. Ziel des von der Biosphärenreservatsverwaltung „Mittlere Elbe“ 2000/2001 durchgeführten EU-LIFE-Projektes „Renaturierung von Fluss, Altwasser und Auenwald an der Mittleren Elbe“ war u. a. die Entwicklung von ca. 60 ha Auenwald auf ehemals beweideten Alteichenbeständen und Grünland. Da bisher Erfolgskontrollen von Hartholz-Auenwaldanpflanzungen fast vollständig fehlen, erfolgte 2007 eine flächendeckende Erhebung des aktuellen Zustandes aller gepflanzten Gehölzbestände in der Kliekener Aue

    Skin tolerant inactivation of multiresistant pathogens using far-UVC LEDs

    Get PDF
    Multiresistant pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) cause serious postoperative infections. A skin tolerant far-UVC (< 240 nm) irradiation system for their inactivation is presented here. It uses UVC LEDs in combination with a spectral filter and provides a peak wavelength of 233 nm, with a full width at half maximum of 12 nm, and an irradiance of 44 µW/cm2. MRSA bacteria in different concentrations on blood agar plates were inactivated with irradiation doses in the range of 15–40 mJ/cm2. Porcine skin irradiated with a dose of 40 mJ/cm2 at 233 nm showed only 3.7% CPD and 2.3% 6-4PP DNA damage. Corresponding irradiation at 254 nm caused 11–14 times higher damage. Thus, the skin damage caused by the disinfectant doses is so small that it can be expected to be compensated by the skin's natural repair mechanisms. LED-based far-UVC lamps could therefore soon be used in everyday clinical practice to eradicate multiresistant pathogens directly on humans

    Spectrally pure far-UVC emission from AlGaN-based LEDs with dielectric band pass filters

    Get PDF
    AlGaN-based far ultraviolet-C (UVC) light emitting diodes (LEDs) with a peak emission wavelength below 240 nm typically show a long-wavelength tail at >240 nm that is detrimental to the use of the devices for skin-friendly antisepsis. We present the development of far-UVC LEDs with reduced long-wavelength emission using a HfO2/SiO2-based distributed Bragg reflector (DBR) filter. When the DBR filter is directly mounted on an LED package, the long-wavelength emission around 250 nm is reduced by two orders of magnitude while the transmitted output power is reduced down to 18%–27% of the initial value for DBR filters with cut-off wavelengths at 237–243 nm. As the transmission through the DBR filter depends strongly on the angle of incidence of the radiation, the transmitted output power of the spectrally pure far-UVC radiation can be doubled when an additional collimating lens is used on top of the LED package before passing through the filter.BMBF, 03ZZ0146C, Zwanzig20 - Advanced UV for Life - Verbundprojekt: Verhinderung der Infektion mit multiresistenten Erregern über In-vivo-UVC-Bestrahlung, TP3: UVC-LED-Strahler für die In-vivo-AnwendungBMBF, 03ZZ0146D, Zwanzig20 - Advanced UV for Life - Verbundprojekt: Verhinderung der Infektion mit multiresistenten Erregern über In-vivo-UVC-Bestrahlung, TP4: Herstellung von UV LEDs um 230 nm für die In-vivo-UVC-BestrahlungBMBF, 03COV10D, CORONA - CORSA - Verbundvorhaben - Inaktivierung von SARS-CoV-2 durch UVC-Licht und Verträglichkeit für den Menschen; TP4: Epitaxie von 230 nm LEDs für die in vivo UVC-Bestrahlun

    The 2020 UV emitter roadmap

    Get PDF
    Solid state UV emitters have many advantages over conventional UV sources. The (Al,In,Ga)N material system is best suited to produce LEDs and laser diodes from 400 nm down to 210 nm—due to its large and tuneable direct band gap, n- and p-doping capability up to the largest bandgap material AlN and a growth and fabrication technology compatible with the current visible InGaN-based LED production. However AlGaN based UV-emitters still suffer from numerous challenges compared to their visible counterparts that become most obvious by consideration of their light output power, operation voltage and long term stability. Most of these challenges are related to the large bandgap of the materials. However, the development since the first realization of UV electroluminescence in the 1970s shows that an improvement in understanding and technology allows the performance of UV emitters to be pushed far beyond the current state. One example is the very recent realization of edge emitting laser diodes emitting in the UVC at 271.8 nm and in the UVB spectral range at 298 nm. This roadmap summarizes the current state of the art for the most important aspects of UV emitters, their challenges and provides an outlook for future developments

    Amino-polyvinyl alcohol coated superparamagnetic iron oxide nanoparticles are suitable for monitoring of human mesenchymal stromal cells in vivo

    No full text
    Mesenchymal stromal cells (MSCs) are promising candidates in regenerative cell-therapies. However, optimizing their number and route of delivery remains a critical issue, which can be addressed by monitoring the MSCs' bio-distribution in vivo using super-paramagnetic iron-oxide nanoparticles (SPIONs). In this study, amino-polyvinyl alcohol coated (A-PVA) SPIONs are introduced for cell-labeling and visualization by magnetic resonance imaging (MRI) of human MSCs. Size and surface charge of A-PVA-SPIONs differ depending on their solvent. Under MSC-labeling conditions, A-PVA-SPIONs have a hydrodynamic diameter of 42 ± 2 nm and a negative Zeta potential of 25 ± 5 mV, which enable efficient internalization by MSCs without the need to use transfection agents. Transmission X-ray microscopy localizes A-PVA-SPIONs in intracellular vesicles and as cytosolic single particles. After identifying non-interfering cell-assays and determining the delivered and cellular dose, in addition to the administered dose, A-PVA-SPIONs are found to be non-toxic to MSCs and non-destructive towards their multi-lineage differentiation potential. Surprisingly, MSC migration is increased. In MRI, A-PVA-SPION-labeled MSCs are successfully visualized in vitro and in vivo. In conclusion, A-PVA-SPIONs have no unfavorable influences on MSCs, although it becomes evident how sensitive their functional behavior is towards SPION-labeling. And A-PVA-SPIONs allow MSC-monitoring in vivo

    A new in situ microscopy approach to study the degradation and failure mechanisms of time-dependent dielectric breakdown: Set-up and opportunities

    No full text
    The time dependent dielectric breakdown (TDDB) in copper/ultra-low-k on-chip interconnect stacks of integrated circuits has become one of the most critical reliability concerns in recent years. In this paper, a novel experimental in situ microscopy approach using transmission X-ray microscopy (TXM) and scanning transmission electron microscopy (STEM) is proposed to study TDDB degradation and failure mechanisms. It combines electrical testing and imaging techniques. Low-dose bright field (BF) STEM inserting a small condenser aperture is chosen to reduce the beam damage of the dielectric material, while the electron spectroscopic imaging technique is used for the chemical analysis to detect the migration path of Cu atoms. This new experimental approach will contribute to an improved understanding of the TDDB effect
    corecore