135 research outputs found

    Sympatric otariids increase trophic segregation in response to warming ocean conditions in Peruvian Humboldt Current System

    Get PDF
    Determining trophic habits of predator communities is essential to measure interspecific interactions and response to environmental fluctuations. South American fur seals, Arctocephalus australis (SAFS) and sea lions Otaria byronia (SASL), coexist along the coasts of Peru. Recently, ocean warming events (2014–2017) that can decrease and impoverish prey biomass have occurred in the Peruvian Humboldt Current System. In this context, our aim was to assess the effect of warming events on long-term inter- and intra-specific niche segregation. We collected whisker from SAFS (55 females and 21 males) and SASL (14 females and 22 males) in Punta San Juan, Peru. We used δ13C and δ15N values serially archived in otariid whiskers to construct a monthly time series for 2005–2019. From the same period we used sea level anomaly records to determine shifts in the predominant oceanographic conditions using a change point analysis. Ellipse areas (SIBER) estimated niche width of species-sex groups and their overlap. We detected a shift in the environmental conditions marking two distinct periods (P1: January 2005—October 2013; P2: November 2013—December 2019). Reduction in δ15N in all groups during P2 suggests impoverished baseline values with bottom-up effects, a shift towards consuming lower trophic level prey, or both. Reduced overlap between all groups in P2 lends support of a more redundant assemblage during the colder P1 to a more trophically segregated assemblage during warmer P2. SASL females show the largest variation in response to the warming scenario (P2), reducing both ellipse area and δ15N mean values. Plasticity to adapt to changing environments and feeding on a more available food source without fishing pressure can be more advantageous for female SASL, albeit temporary trophic bottom-up effects. This helps explain larger population size of SASL in Peru, in contrast to the smaller and declining SAFS population

    Zika vector competence data reveals risks of outbreaks: the contribution of the European ZIKAlliance project

    Get PDF
    First identified in 1947, Zika virus took roughly 70 years to cause a pandemic unusually associated with virus-induced brain damage in newborns. Zika virus is transmitted by mosquitoes, mainly Aedes aegypti, and secondarily, Aedes albopictus, both colonizing a large strip encompassing tropical and temperate regions. As part of the international project ZIKAlliance initiated in 2016, 50 mosquito populations from six species collected in 12 countries were experimentally infected with different Zika viruses. Here, we show that Ae. aegypti is mainly responsible for Zika virus transmission having the highest susceptibility to viral infections. Other species play a secondary role in transmission while Culex mosquitoes are largely non-susceptible. Zika strain is expected to significantly modulate transmission efficiency with African strains being more likely to cause an outbreak. As the distribution of Ae. aegypti will doubtless expand with climate change and without new marketed vaccines, all the ingredients are in place to relive a new pandemic of Zika.info:eu-repo/semantics/publishedVersio

    Zika vector competence data reveals risks of outbreaks: the contribution of the European ZIKAlliance project

    Full text link
    First identified in 1947, Zika virus took roughly 70 years to cause a pandemic unusually associated with virus-induced brain damage in newborns. Zika virus is transmitted by mosquitoes, mainly Aedes aegypti, and secondarily, Aedes albopictus, both colonizing a large strip encompassing tropical and temperate regions. As part of the international project ZIKAlliance initiated in 2016, 50 mosquito populations from six species collected in 12 countries were experimentally infected with different Zika viruses. Here, we show that Ae. aegypti is mainly responsible for Zika virus transmission having the highest susceptibility to viral infections. Other species play a secondary role in transmission while Culex mosquitoes are largely non-susceptible. Zika strain is expected to significantly modulate transmission efficiency with African strains being more likely to cause an outbreak. As the distribution of Ae. aegypti will doubtless expand with climate change and without new marketed vaccines, all the ingredients are in place to relive a new pandemic of Zika

    EFESTO-2: European Flexible Heat Shields Advanced TPS Design and Tests for Future In-Orbit Demonstration - 2

    Get PDF
    EFESTO-2 is an EU-funded project under Horizon Europe that aims to enhance European expertise in Inflatable Heat Shields (IHS). Building on the achievements of the previous EFESTO project (H2020 funds No 821801), EFESTO-2 focuses on advancing key IHS technologies to increase their Technology Readiness Level (TRL). The project pillars include analyzing the business case for IHS applications, exploring additional aspects of IHS, improving tools and models, and establishing a development roadmap for IHS systems. This paper outlines the project objectives and plan, highlighting ongoing and future activities for the next two years, positioning it within the European re-entry technology roadmap. Funding was provided by the European Union's Horizon Europe program (grant agreement No 1010811041)

    Integrated photonic-based coronagraphic systems for future space telescopes

    Full text link
    The detection and characterization of Earth-like exoplanets around Sun-like stars is a primary science motivation for the Habitable Worlds Observatory. However, the current best technology is not yet advanced enough to reach the 10^-10 contrasts at close angular separations and at the same time remain insensitive to low-order aberrations, as would be required to achieve high-contrast imaging of exo-Earths. Photonic technologies could fill this gap, potentially doubling exo-Earth yield. We review current work on photonic coronagraphs and investigate the potential of hybridized designs which combine both classical coronagraph designs and photonic technologies into a single optical system. We present two possible systems. First, a hybrid solution which splits the field of view spatially such that the photonics handle light within the inner working angle and a conventional coronagraph that suppresses starlight outside it. Second, a hybrid solution where the conventional coronagraph and photonics operate in series, complementing each other and thereby loosening requirements on each subsystem. As photonic technologies continue to advance, a hybrid or fully photonic coronagraph holds great potential for future exoplanet imaging from space.Comment: Conference Proceedings of SPIE: Techniques and Instrumentation for Detection of Exoplanets XI, vol. 12680 (2023

    Visible extreme adaptive optics on extremely large telescopes: Towards detecting oxygen in Proxima Centauri b and analogs

    Full text link
    Looking to the future of exo-Earth imaging from the ground, core technology developments are required in visible extreme adaptive optics (ExAO) to enable the observation of atmospheric features such as oxygen on rocky planets in visible light. UNDERGROUND (Ultra-fast AO techNology Determination for Exoplanet imageRs from the GROUND), a collaboration built in Feb. 2023 at the Optimal Exoplanet Imagers Lorentz Workshop, aims to (1) motivate oxygen detection in Proxima Centauri b and analogs as an informative science case for high-contrast imaging and direct spectroscopy, (2) overview the state of the field with respect to visible exoplanet imagers, and (3) set the instrumental requirements to achieve this goal and identify what key technologies require further development.Comment: SPIE Proceeding: 2023 / 12680-6

    The CHEOPS mission

    Full text link
    The CHaracterising ExOPlanet Satellite (CHEOPS) was selected in 2012, as the first small mission in the ESA Science Programme and successfully launched in December 2019. CHEOPS is a partnership between ESA and Switzerland with important contributions by ten additional ESA Member States. CHEOPS is the first mission dedicated to search for transits of exoplanets using ultrahigh precision photometry on bright stars already known to host planets. As a follow-up mission, CHEOPS is mainly dedicated to improving, whenever possible, existing radii measurements or provide first accurate measurements for a subset of those planets for which the mass has already been estimated from ground-based spectroscopic surveys and to following phase curves. CHEOPS will provide prime targets for future spectroscopic atmospheric characterisation. Requirements on the photometric precision and stability have been derived for stars with magnitudes ranging from 6 to 12 in the V band. In particular, CHEOPS shall be able to detect Earth-size planets transiting G5 dwarf stars in the magnitude range between 6 and 9 by achieving a photometric precision of 20 ppm in 6 hours of integration. For K stars in the magnitude range between 9 and 12, CHEOPS shall be able to detect transiting Neptune-size planets achieving a photometric precision of 85 ppm in 3 hours of integration. This is achieved by using a single, frame-transfer, back-illuminated CCD detector at the focal plane assembly of a 33.5 cm diameter telescope. The 280 kg spacecraft has a pointing accuracy of about 1 arcsec rms and orbits on a sun-synchronous dusk-dawn orbit at 700 km altitude. The nominal mission lifetime is 3.5 years. During this period, 20% of the observing time is available to the community through a yearly call and a discretionary time programme managed by ESA.Comment: Submitted to Experimental Astronom

    Beyond the Global Brain Differences:Intraindividual Variability Differences in 1q21.1 Distal and 15q11.2 BP1-BP2 Deletion Carriers

    Get PDF
    BACKGROUND: Carriers of the 1q21.1 distal and 15q11.2 BP1-BP2 copy number variants exhibit regional and globalbrain differences compared with noncarriers. However, interpreting regional differences is challenging if a globaldifference drives the regional brain differences. Intraindividual variability measures can be used to test for regionaldifferences beyond global differences in brain structure.METHODS: Magnetic resonance imaging data were used to obtain regional brain values for 1q21.1 distal deletion (n =30) and duplication (n = 27) and 15q11.2 BP1-BP2 deletion (n = 170) and duplication (n = 243) carriers and matchednoncarriers (n = 2350). Regional intra-deviation scores, i.e., the standardized difference between an individual’sregional difference and global difference, were used to test for regional differences that diverge from the globaldifference.RESULTS: For the 1q21.1 distal deletion carriers, cortical surface area for regions in the medial visual cortex, posterior cingulate, and temporal pole differed less and regions in the prefrontal and superior temporal cortex differedmore than the global difference in cortical surface area. For the 15q11.2 BP1-BP2 deletion carriers, cortical thicknessin regions in the medial visual cortex, auditory cortex, and temporal pole differed less and the prefrontal andsomatosensory cortex differed more than the global difference in cortical thickness.CONCLUSIONS: We find evidence for regional effects beyond differences in global brain measures in 1q21.1 distaland 15q11.2 BP1-BP2 copy number variants. The results provide new insight into brain profiling of the 1q21.1 distaland 15q11.2 BP1-BP2 copy number variants, with the potential to increase understanding of the mechanismsinvolved in altered neurodevelopment

    Recommendations from the European Working Group for Value Assessment and Funding Processes in Rare Diseases (ORPH-VAL)

    Get PDF
    International audienceAbstractRare diseases are an important public health issue with high unmet need. The introduction of the EU Regulation on orphan medicinal products (OMP) has been successful in stimulating investment in the research and development of OMPs. Despite this advancement, patients do not have universal access to these new medicines. There are many factors that affect OMP uptake, but one of the most important is the difficulty of making pricing and reimbursement (P&R) decisions in rare diseases. Until now, there has been little consensus on the most appropriate assessment criteria, perspective or appraisal process. This paper proposes nine principles to help improve the consistency of OMP P&R assessment in Europe and ensure that value assessment, pricing and funding processes reflect the specificities of rare diseases and contribute to both the sustainability of healthcare systems and the sustainability of innovation in this field. These recommendations are the output of the European Working Group for Value Assessment and Funding Processes in Rare Diseases (ORPH-VAL), a collaboration between rare disease experts, patient representatives, academics, health technology assessment (HTA) practitioners, politicians and industry representatives. ORPH-VAL reached its recommendations through careful consideration of existing OMP P&R literature and through a wide consultation with expert stakeholders, including payers, regulators and patients. The principles cover four areas: OMP decision criteria, OMP decision process, OMP sustainable funding systems and European co-ordination. This paper also presents a guide to the core elements of value relevant to OMPs that should be consistently considered in all OMP appraisals. The principles outlined in this paper may be helpful in drawing together an emerging consensus on this topic and identifying areas where consistency in payer approach could be achievable and beneficial. All stakeholders have an obligation to work together to ensure that the promise of OMP’s is realised

    Large-scale analysis of structural brain asymmetries in schizophrenia via the ENIGMA consortium

    Get PDF
    Left-right asymmetry is an important organizing feature of the healthy brain that may be altered in schizophrenia, but most studies have used relatively small samples and heterogeneous approaches, resulting in equivocal findings. We carried out the largest case-control study of structural brain asymmetries in schizophrenia, using MRI data from 5,080 affected individuals and 6,015 controls across 46 datasets in the ENIGMA consortium, using a single image analysis protocol. Asymmetry indexes were calculated for global and regional cortical thickness, surface area, and subcortical volume measures. Differences of asymmetry were calculated between affected individuals and controls per dataset, and effect sizes were meta-analyzed across datasets. Small average case-control differences were observed for thickness asymmetries of the rostral anterior cingulate and the middle temporal gyrus, both driven by thinner left-hemispheric cortices in schizophrenia. Analyses of these asymmetries with respect to the use of antipsychotic medication and other clinical variables did not show any significant associations. Assessment of age- and sex-specific effects revealed a stronger average leftward asymmetry of pallidum volume between older cases and controls. Case-control differences in a multivariate context were assessed in a subset of the data (N = 2,029), which revealed that 7% of the variance across all structural asymmetries was explained by case-control status. Subtle case-control differences of brain macro-structural asymmetry may reflect differences at the molecular, cytoarchitectonic or circuit levels that have functional relevance for the disorder. Reduced left middle temporal cortical thickness is consistent with altered left-hemisphere language network organization in schizophrenia
    corecore