24 research outputs found

    Optimización de problemas multiobjetivo de Ingeniería Civil con jMetal

    Get PDF
    Este artículo describe el uso del framework de optimización multiobjetivo jMetal para afrontar la resolución de problemas de ingeniería civil; en particular, lo que se ha hecho ha sido integrar un software Open Source para el diseño de estructuras, denominado Ebes, con jMetal. De esta forma los ingenieros civiles tienen a su disposición una herramienta que les permite diseñar estructuras que luego pueden ser optimizadas con metaheurísticas multiobjetivo atendiendo a varios criterios, como minimizar el peso y minimizar la deformación. Por otro lado, este tipo de problemas pueden ser objeto de estudios por parte de investigadores del área de las metaheurísticas, que pueden usarlos como casos de estudio. Tras presentar tanto jMetal como Ebes, se detalla la integración de ambas herramientas, se presentan tres casos de estudio y se proponen algunas líneas abiertas de investigación.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Solving a Real-World Structural Optimization Problem With a Distributed SMS-EMOA Algorithm

    Get PDF
    This paper addresses a real-world optimization problem in civil engineering. It lies in the dimensioning of a 162m long bridge composed of 1584 bars so that both its weight and its deformation are to be minimized. Evaluating each possible configuration of the bridge takes several seconds and, as a consequence, running a metaheuristic for several thousands of evaluations would require many days on one single processor. Our approach has been to develop a distributed master/worker version of SMS-EMOA, an indicator-based multiobjective algorithm. By combining the Java implementation of the algorithm in jMetal with the Condor distributed scheduler, we have been able to use more than 350 cores to obtain accurate results in a reasonable amount of time.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Pomegranate (Punica granatum L.) Peel Extracts as Antimicrobial and Antioxidant Additives Used in Alfalfa Sprouts

    Get PDF
    Aqueous and ethanolic pomegranate peel extracts (PPE) were studied as a source of phenolic compounds with antimicrobial, anti-quorum sensing, and antioxidant properties. The aqueous extract showed higher total phenolic and flavonoid content (153.43 mg GAE/g and 45.74, respectively) and antioxidant capacity (DPPH radical inhibition: 86.12%, ABTS radical scavenging capacity: 958.21 mg TE/dw) compared to the ethanolic extract. The main phenolic compounds identified by UPLC-DAD were chlorogenic and gallic acids. The aqueous PPE extract showed antimicrobial activity against Listeria monocytogenes, Salmonella Typhimurium, Candida tropicalis (MICs 19–30 mg/mL), and anti-quorum sensing activity expressed as inhibition of Chromobacterium violaceum violacein production (%). The aqueous PPE extracts at 25 mg/mL applied on alfalfa sprouts reduced psychrophilic bacteria (1.12 Log CFU/100 g) and total coliforms (1.23 Log CFU/100 g) and increased the antioxidant capacity of the treated sprouts (55.13 mol TE/100 g (DPPH) and 126.56 mol TE/100 g (ABTS)) compared to untreated alfalfa. This study emphasizes PPE’s antioxidant and antimicrobial activities in alfalfa sprouts preservation

    Silencing COI1 in Rice Increases Susceptibility to Chewing Insects and Impairs Inducible Defense

    Get PDF
    The jasmonic acid (JA) pathway plays a key role in plant defense responses against herbivorous insects. CORONATINE INSENSITIVE1 (COI1) is an F-box protein essential for all jasmonate responses. However, the precise defense function of COI1 in monocotyledonous plants, especially in rice (Oryza sativa L.) is largely unknown. We silenced OsCOI1 in rice plants via RNA interference (RNAi) to determine the role of OsCOI1 in rice defense against rice leaf folder (LF) Cnaphalocrocis medinalis, a chewing insect, and brown planthopper (BPH) Nilaparvata lugens, a phloem-feeding insect. In wild-type rice plants (WT), the transcripts of OsCOI1 were strongly and continuously up-regulated by LF infestation and methyl jasmonate (MeJA) treatment, but not by BPH infestation. The abundance of trypsin protease inhibitor (TrypPI), and the enzymatic activities of polyphenol oxidase (PPO) and peroxidase (POD) were enhanced in response to both LF and BPH infestation, but the activity of lipoxygenase (LOX) was only induced by LF. The RNAi lines with repressed expression of OsCOI1 showed reduced resistance against LF, but no change against BPH. Silencing OsCOI1 did not alter LF-induced LOX activity and JA content, but it led to a reduction in the TrypPI content, POD and PPO activity by 62.3%, 48.5% and 27.2%, respectively. In addition, MeJA-induced TrypPI and POD activity were reduced by 57.2% and 48.2% in OsCOI1 RNAi plants. These results suggest that OsCOI1 is an indispensable signaling component, controlling JA-regulated defense against chewing insect (LF) in rice plants, and COI1 is also required for induction of TrypPI, POD and PPO in rice defense response to LF infestation

    4to. Congreso Internacional de Ciencia, Tecnología e Innovación para la Sociedad. Memoria académica

    Get PDF
    Este volumen acoge la memoria académica de la Cuarta edición del Congreso Internacional de Ciencia, Tecnología e Innovación para la Sociedad, CITIS 2017, desarrollado entre el 29 de noviembre y el 1 de diciembre de 2017 y organizado por la Universidad Politécnica Salesiana (UPS) en su sede de Guayaquil. El Congreso ofreció un espacio para la presentación, difusión e intercambio de importantes investigaciones nacionales e internacionales ante la comunidad universitaria que se dio cita en el encuentro. El uso de herramientas tecnológicas para la gestión de los trabajos de investigación como la plataforma Open Conference Systems y la web de presentación del Congreso http://citis.blog.ups.edu.ec/, hicieron de CITIS 2017 un verdadero referente entre los congresos que se desarrollaron en el país. La preocupación de nuestra Universidad, de presentar espacios que ayuden a generar nuevos y mejores cambios en la dimensión humana y social de nuestro entorno, hace que se persiga en cada edición del evento la presentación de trabajos con calidad creciente en cuanto a su producción científica. Quienes estuvimos al frente de la organización, dejamos plasmado en estas memorias académicas el intenso y prolífico trabajo de los días de realización del Congreso Internacional de Ciencia, Tecnología e Innovación para la Sociedad al alcance de todos y todas

    Qom—A New Hydrologic Prediction Model Enhanced with Multi-Objective Optimization

    No full text
    The efficient calibration of hydrologic models allows experts to evaluate past events in river basins, as well as to describe new scenarios and predict possible future floodings. A difficulty in this context is the need to adjust a large number of parameters in the model to reduce prediction errors. In this work, we address this issue with two complementary contributions. First, we propose a new lumped rainfall-runoff hydrologic model—called Qom—which is featured by a limited set of continuous decision variables associated with soil moisture and direct runoff. Qom allows to separate and quantify the volume of losses and excesses of the rainwater falling in a hydrographic basin, while a Clark’s model is used to determine output hydrograms. Second, we apply a multi-objective optimization approach to find accurate calibrations of the model in a systematic and automatic way. The idea is to formulate the process as a bi-objective optimization problem where the Nash-Sutcliffe Efficiency coefficient and percent bias have to be minimized, and to combine the results found by a set of metaheuristics used to solve it. For validation purposes, we apply our proposal in six hydrographic scenarios, comprising river basins located in Spain, USA, Brazil and Argentina. The proposed approach is shown to minimize prediction errors of simulated streamflows with regards to those observed in these real-world basins.Ministerio de Educación y Ciencia TIN2017-86049-

    Gallic Acid Content and an Antioxidant Mechanism Are Responsible for the Antiproliferative Activity of ‘Ataulfo’ Mango Peel on LS180 Cells

    No full text
    Mango “Ataulfo” peel is a rich source of polyphenols (PP), with antioxidant and anti-cancer properties; however, it is unknown whether such antiproliferative activity is related to PP’s antioxidant activity. The content (HPLC-DAD), antioxidant (DPPH, FRAP, ORAC), and antiproliferative activities (MTT) of free (FP) and chemically-released PP from mango ‘Ataulfo’ peel after alkaline (AKP) and acid (AP) hydrolysis, were evaluated. AKP fraction was higher (µg/g DW) in gallic acid (GA; 23,816 ± 284) than AP (5610 ± 8) of FR (not detected) fractions. AKP fraction and GA showed the highest antioxidant activity (DPPH/FRAP/ORAC) and GA’s antioxidant activity follows a single electron transfer (SET) mechanism. AKP and GA also showed the best antiproliferative activity against human colon adenocarcinoma cells (LS180; IC50 (µg/mL) 138.2 ± 2.5 and 45.7 ± 5.2) and mouse connective cells (L929; 93.5 ± 7.7 and 65.3 ± 1.2); Cheminformatics confirmed the hydrophilic nature (LogP, 0.6) and a good absorption capacity (75%) for GA. Data suggests that GA’s antiproliferative activity appears to be related to its antioxidant mechanism, although other mechanisms after its absorption could also be involved

    Modulatory effects of main Mango (Mangifera indica L. cv. “Ataulfo”) phenolics on the growth of selected probiotic and pathogenic bacteria

    No full text
    Fruit extracts from different tissues (pulp, seed and peel) have shown antimicrobial and prebiotic activities related to their phenolic profile, although structure-specific evaluations have not been reported yet. The effect of five phenolic compounds (catechin and gallic, vanillic, ferulic and protocatechuic acids) identified in different fruits, particularly in mango, was evaluated on the growth of two probiotic (Lactobacillus rhamnosus GG ATCC 53103 and Lactobacillus acidophilus NRRLB 4495) and two pathogenic (Escherichia coli 0157:H7 ATCC 43890 and Salmonella enterica serovar Typhimurium ATCC 14028) bacteria. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of phenolic acids ranged from 15-20 mmol and 20-30 mmol against E. coli and S. Typhimurium , respectively. For catechin, the MIC and MBC were 35 mmol l 1 and 35 mmol l against E. coli and S. Typhimurium , respectively. The presence of catechin and gallic, protocatechuic and vanillic acids in MRS broth without dextrose allowed the growth of lactobacilli. Catechin combined with protocatechuic or vanillic acid mildly allowed the growth of both probiotics. In conclusion, phenolic compounds can selectively inhibit the growth of pathogenic bacteria without affecting the viability of probiotic

    Comparison of Single and Combined Use of Catechin, Protocatechuic, and Vanillic Acids as Antioxidant and Antibacterial Agents against Uropathogenic <i>Escherichia Coli</i> at Planktonic and Biofilm Levels

    No full text
    The objective of this study was to evaluate the effect of combining catechin, protocatechuic, and vanillic acids against planktonic growing, adhesion, and biofilm eradication of uropathogenic Escherichia coli (UPEC), as well as antioxidant agents. The minimum inhibitory concentrations (MIC) of protocatechuic, vanillic acids and catechin against the growth of planktonic bacteria were 12.98, 11.80, and 13.78 mM, respectively. Mixing 1.62 mM protocatechuic acid + 0.74 mM vanillic acid + 0.05 mM catechin resulted in a synergistic effect acting as an MIC. Similarly, the minimum concentrations of phenolic compounds to prevent UPEC adhesion and biofilm formation (MBIC) were 11.03 and 7.13 mM of protocatechuic and vanillic acids, respectively, whereas no MBIC of catechin was found. However, combinations of 1.62 mM protocatechuic acid + 0.74 mM vanillic acid + 0.05 mM catechin showed a synergistic effect acting as MBIC. On the other hand, the minimum concentrations to eradicate biofilms (MBEC) were 25.95 and 23.78 mM, respectively. The combination of 3.20 mM protocatechuic acid, 2.97 mM vanillic acid, and 1.72 mM catechin eradicated pre-formed biofilms. The antioxidant capacity of the combination of phenolics was higher than the expected theoretical values, indicating synergism by the DPPH&#8226;, ABTS, and FRAP assays. Effective concentrations of catechin, protocatechuic, and vanillic acids were reduced from 8 to 1378 times when combined. In contrast, the antibiotic nitrofurantoin was not effective in eradicating biofilms from silicone surfaces. In conclusion, the mixture of phenolic compounds was more effective in preventing cell adhesion and eradicating pre-formed biofilms of uropathogenic E. coli than single compounds and nitrofurantoin, and showed antioxidant synergy
    corecore