72 research outputs found

    Conducting Polymer‐Ionic Liquid Electrode Arrays for High‐Density Surface Electromyography

    Get PDF
    Abstract: Surface electromyography (EMG) is used as a medical diagnostic and to control prosthetic limbs. Electrode arrays that provide large‐area, high density recordings have the potential to yield significant improvements in both fronts, but the need remains largely unfulfilled. Here, digital fabrication techniques are used to make scalable electrode arrays that capture EMG signals with mm spatial resolution. Using electrodes made of poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) composites with the biocompatible ionic liquid (IL) cholinium lactate, the arrays enable high quality spatiotemporal recordings from the forearm of volunteers. These recordings allow to identify the motions of the index, little, and middle fingers, and to directly visualize the propagation of polarization/depolarization waves in the underlying muscles. This work paves the way for scalable fabrication of cutaneous electrophysiology arrays for personalized medicine and highly articulate prostheses

    Multi-Level Communication of Human Retinal Pigment Epithelial Cells via Tunneling Nanotubes

    Get PDF
    Background: Tunneling nanotubes (TNTs) may offer a very specific and effective way of intercellular communication. Here we investigated TNTs in the human retinal pigment epithelial (RPE) cell line ARPE-19. Morphology of TNTs was examined by immunostaining and scanning electron microscopy. To determine the function of TNTs between cells, we studied the TNT-dependent intercellular communication at different levels including electrical and calcium signalling, small molecular diffusion as well as mitochondrial re-localization. Further, intercellular organelles transfer was assayed by FACS analysis. Methodology and Principal Findings: Microscopy showed that cultured ARPE-19 cells are frequently connected by TNTs, which are not attached to the substratum. The TNTs were straight connections between cells, had a typical diameter of 50 to 300 nm and a length of up to 120 µm. We observed de novo formation of TNTs by diverging from migrating cells after a short time of interaction. Scanning electron microscopy confirmed characteristic features of TNTs. Fluorescence microscopy revealed that TNTs between ARPE-19 cells contain F-actin but no microtubules. Depolymerisation of F-actin, induced by addition of latrunculin-B, led to disappearance of TNTs. Importantly, these TNTs could function as channels for the diffusion of small molecules such as Lucifer Yellow, but not for large molecules like Dextran Red. Further, organelle exchange between cells via TNTs was observed by microscopy. Using Ca2+ imaging we show the intercellular transmission of calcium signals through TNTs. Mechanical stimulation led to membrane depolarisation, which expand through TNT connections between ARPE-19 cells. We further demonstrate that TNTs can mediate electrical coupling between distant cells. Immunolabelling for Cx43 showed that this gap junction protein is interposed at one end of 44% of TNTs between ARPE-19 cells. Conclusions and Significance: Our observations indicate that human RPE cell line ARPE-19 cells communicate by tunneling nanotubes and can support different types of intercellular traffic

    500 ml of blood loss does not decrease non-invasive tissue oxygen saturation (StO2) as measured by near infrared spectroscopy - A hypothesis generating pilot study in healthy adult women

    Get PDF
    BACKGROUND: The goal when resuscitating trauma patients is to achieve adequate tissue perfusion. One parameter of tissue perfusion is tissue oxygen saturation (StO2), as measured by near infrared spectroscopy. Using a commercially available device, we investigated whether clinically relevant blood loss of 500 ml in healthy volunteers can be detected by changes in StO2 after a standardized ischemic event. METHODS: We performed occlusion of the brachial artery for 3 minutes in 20 healthy female blood donors before and after blood donation. StO2 and total oxygenated tissue hemoglobin (O2Hb) were measured continuously at the thenar eminence. 10 healthy volunteers were assessed in the same way, to examine whether repeated vascular occlusion without blood donation exhibits time dependent effects. RESULTS: Blood donation caused a substantial decrease in systolic blood pressure, but did not affect resting StO2 and O2Hb values. No changes were measured in the blood donor group in the reaction to the vascular occlusion test, but in the control group there was an increase in the O2Hb rate of recovery during the reperfusion phase. CONCLUSION: StO2 measured at the thenar eminence seems to be insensitive to blood loss of 500 ml in this setting. Probably blood loss greater than this might lead to detectable changes guiding the treating physician. The exact cut off for detectable changes and the time effect on repeated vascular occlusion tests should be explored further. Until now no such data exist

    Intercellular Transport of Oct4 in Mammalian Cells: A Basic Principle to Expand a Stem Cell Niche?

    Get PDF
    Background: The octamer-binding transcription factor 4 (Oct4) was originally described as a marker of embryonic stem cells. Recently, the role of Oct4 as a key regulator in pluripotency was shown by its ability to reprogram somatic cells in vitro, either alone or in concert with other factors. While artificial induction of pluripotency using transcription factors is possible in mammalian cell culture, it remains unknown whether a potential natural transfer mechanism might be of functional relevance in vivo. The stem cell based regeneration of deer antlers is a unique model for rapid and complete tissue regeneration in mammals and therefore most suitable to study such mechanisms. Here, the transfer of pluripotency factors from resident stem cell niche cells to differentiated cells could recruit more stem cells and start rapid tissue regeneration. Methodology/Principal Findings: We report on the ability of STRO-1 + deer antlerogenic mesenchymal stem cells (DaMSCs) to transport Oct4 via direct cell-to-cell connections. Upon cultivation in stem cell expansion medium, we observed nuclear Oct4 expression in nearly all cells. A number of these cells exhibit Oct4 expression not only in the nucleus, but also with perinuclear localisation and within far-ranging intercellular connections. Furthermore, many cells showed intercellular connections containing both F-actin and a-tubulin and through which transport could be observed. To proof that intercellular Oct4-transfer has functional consequences in recipient cells we used a co-culture approach with STRO-1 + DaMSCs and a murine embryonic fibroblast indicator cell line (Oct4-GFP MEF). In this cell line a reporter gene (GFP) unde

    The art of cellular communication: tunneling nanotubes bridge the divide

    Get PDF
    The ability of cells to receive, process, and respond to information is essential for a variety of biological processes. This is true for the simplest single cell entity as it is for the highly specialized cells of multicellular organisms. In the latter, most cells do not exist as independent units, but are organized into specialized tissues. Within these functional assemblies, cells communicate with each other in different ways to coordinate physiological processes. Recently, a new type of cell-to-cell communication was discovered, based on de novo formation of membranous nanotubes between cells. These F-actin-rich structures, referred to as tunneling nanotubes (TNT), were shown to mediate membrane continuity between connected cells and facilitate the intercellular transport of various cellular components. The subsequent identification of TNT-like structures in numerous cell types revealed some structural diversity. At the same time it emerged that the direct transfer of cargo between cells is a common functional property, suggesting a general role of TNT-like structures in selective, long-range cell-to-cell communication. Due to the growing number of documented thin and long cell protrusions in tissue implicated in cell-to-cell signaling, it is intriguing to speculate that TNT-like structures also exist in vivo and participate in important physiological processes

    Fas Signalling Promotes Intercellular Communication in T Cells

    Get PDF
    Cell-to-cell communication is a fundamental process for development and maintenance of multicellular organisms. Diverse mechanisms for the exchange of molecular information between cells have been documented, such as the exchange of membrane fragments (trogocytosis), formation of tunneling nanotubes (TNTs) and release of microvesicles (MVs). In this study we assign to Fas signalling a pivotal role for intercellular communication in CD4+ T cells. Binding of membrane-bound FasL to Fas expressing target cells triggers a well-characterized pro-apoptotic signalling cascade. However, our results, pairing up flow cytometric studies with confocal microscopy data, highlight a new social dimension for Fas/FasL interactions between CD4+ T cells. Indeed, FasL enhances the formation of cell conjugates (8 fold of increase) in an early time-frame of stimulation (30 min), and this phenomenon appears to be a crucial step to prime intercellular communication. Our findings show that this communication mainly proceeds along a cytosolic material exchange (ratio of exchange >10, calculated as ratio of stimulated cells signal divided by that recorded in control cells) via TNTs and MVs release. In particular, inhibition of TNTs genesis by pharmacological agents (Latruculin A and Nocodazole) markedly reduced this exchange (inhibition percentage: >40% and >50% respectively), suggesting a key role for TNTs in CD4+ T cells communication. Although MVs are present in supernatants from PHA-activated T cells, Fas treatment also leads to a significant increase in the amount of released MVs. In fact, the co-culture performed between MVs and untreated cells highlights a higher presence of MVs in the medium (1.4 fold of increase) and a significant MVs uptake (6 fold of increase) by untreated T lymphocytes. We conclude that Fas signalling induces intercellular communication in CD4+ T cells by different mechanisms that seem to start concomitantly with the main pathway (programmed cell death) promoted by FasL

    Tunneling Nanotubes Provide a Unique Conduit for Intercellular Transfer of Cellular Contents in Human Malignant Pleural Mesothelioma

    Get PDF
    Tunneling nanotubes are long, non-adherent F-actin-based cytoplasmic extensions which connect proximal or distant cells and facilitate intercellular transfer. The identification of nanotubes has been limited to cell lines, and their role in cancer remains unclear. We detected tunneling nanotubes in mesothelioma cell lines and primary human mesothelioma cells. Using a low serum, hyperglycemic, acidic growth medium, we stimulated nanotube formation and bidirectional transfer of vesicles, proteins, and mitochondria between cells. Notably, nanotubes developed between malignant cells or between normal mesothelial cells, but not between malignant and normal cells. Immunofluorescent staining revealed their actin-based assembly and structure. Metformin and an mTor inhibitor, Everolimus, effectively suppressed nanotube formation. Confocal microscopy with 3-dimensional reconstructions of sectioned surgical specimens demonstrated for the first time the presence of nanotubes in human mesothelioma and lung adenocarcinoma tumor specimens. We provide the first evidence of tunneling nanotubes in human primary tumors and cancer cells and propose that these structures play an important role in cancer cell pathogenesis and invasion

    Omics and multi-omics analysis for the early identification and improved outcome of patients with psoriatic arthritis

    Get PDF
    The definitive diagnosis and early treatment of many immune-mediated inflammatory diseases (IMIDs) is hindered by variable and overlapping clinical manifestations. Psoriatic arthritis (PsA), which develops in ~30% of people with psoriasis, is a key example. This mixed-pattern IMID is apparent in entheseal and synovial musculoskeletal structures, but a definitive diagnosis often can only be made by clinical experts or when an extensive progressive disease state is apparent. As with other IMIDs, the detection of multimodal molecular biomarkers offers some hope for the early diagnosis of PsA and the initiation of effective management and treatment strategies. However, specific biomarkers are not yet available for PsA. The assessment of new markers by genomic and epigenomic profiling, or the analysis of blood and synovial fluid/tissue samples using proteomics, metabolomics and lipidomics, provides hope that complex molecular biomarker profiles could be developed to diagnose PsA. Importantly, the integration of these markers with high-throughput histology, imaging and standardized clinical assessment data provides an important opportunity to develop molecular profiles that could improve the diagnosis of PsA, predict its occurrence in cohorts of individuals with psoriasis, differentiate PsA from other IMIDs, and improve therapeutic responses. In this review, we consider the technologies that are currently deployed in the EU IMI2 project HIPPOCRATES to define biomarker profiles specific for PsA and discuss the advantages of combining multi-omics data to improve the outcome of PsA patients

    Second asymptomatic carotid surgery trial (ACST-2): a randomised comparison of carotid artery stenting versus carotid endarterectomy

    Get PDF
    Background: Among asymptomatic patients with severe carotid artery stenosis but no recent stroke or transient cerebral ischaemia, either carotid artery stenting (CAS) or carotid endarterectomy (CEA) can restore patency and reduce long-term stroke risks. However, from recent national registry data, each option causes about 1% procedural risk of disabling stroke or death. Comparison of their long-term protective effects requires large-scale randomised evidence. Methods: ACST-2 is an international multicentre randomised trial of CAS versus CEA among asymptomatic patients with severe stenosis thought to require intervention, interpreted with all other relevant trials. Patients were eligible if they had severe unilateral or bilateral carotid artery stenosis and both doctor and patient agreed that a carotid procedure should be undertaken, but they were substantially uncertain which one to choose. Patients were randomly allocated to CAS or CEA and followed up at 1 month and then annually, for a mean 5 years. Procedural events were those within 30 days of the intervention. Intention-to-treat analyses are provided. Analyses including procedural hazards use tabular methods. Analyses and meta-analyses of non-procedural strokes use Kaplan-Meier and log-rank methods. The trial is registered with the ISRCTN registry, ISRCTN21144362. Findings: Between Jan 15, 2008, and Dec 31, 2020, 3625 patients in 130 centres were randomly allocated, 1811 to CAS and 1814 to CEA, with good compliance, good medical therapy and a mean 5 years of follow-up. Overall, 1% had disabling stroke or death procedurally (15 allocated to CAS and 18 to CEA) and 2% had non-disabling procedural stroke (48 allocated to CAS and 29 to CEA). Kaplan-Meier estimates of 5-year non-procedural stroke were 2·5% in each group for fatal or disabling stroke, and 5·3% with CAS versus 4·5% with CEA for any stroke (rate ratio [RR] 1·16, 95% CI 0·86–1·57; p=0·33). Combining RRs for any non-procedural stroke in all CAS versus CEA trials, the RR was similar in symptomatic and asymptomatic patients (overall RR 1·11, 95% CI 0·91–1·32; p=0·21). Interpretation: Serious complications are similarly uncommon after competent CAS and CEA, and the long-term effects of these two carotid artery procedures on fatal or disabling stroke are comparable. Funding: UK Medical Research Council and Health Technology Assessment Programme
    corecore