113 research outputs found

    New Mechanism of Magnetoresistance in Bulk Semiconductors: Boundary Condition Effects

    Full text link
    We consider the electronic transport in bounded semiconductors in the presence of an external magnetic field. Taking into account appropriate boundary conditions for the current density at the contacts, a change in the magnetoresistance of bulk semiconductors is found as compared with the usual theory of galvanomagnetic effects in boundless media. New mechanism in magnetoresistance connected with the boundary conditions arises. In particular, even when the relaxation time is independent of the electron energy, magnetoresistance is not vanish.Comment: 7 pages, Elsart macro package (LaTeX2e edition

    Experimental Evidence of Giant Electron - Gamma Bursts Generated by Extensive Atmospheric Showers in Thunderclouds

    Full text link
    The existence of a new phenomena - giant electron-gamma bursts is established. The bursts are generated in thunderclouds as a result of the combined action of runaway breakdown and extensive atmosphere showers (RB-EAS). The experiments were fulfilled at the Tien Shan Mountain Scientific Station using EAS-Radio installation. This specially constructed installation consists of a wide spread EAS trigger array and a high time resolution radiointerferometer.Comment: 30 pages, 16 figure

    Refraction of dispersive shock waves

    Get PDF
    We study a dispersive counterpart of the classical gas dynamics problem of the interaction of a shock wave with a counter-propagating simple rarefaction wave often referred to as the shock wave refraction. The refraction of a one-dimensional dispersive shock wave (DSW) due to its head-on collision with the centred rarefaction wave (RW) is considered in the framework of defocusing nonlinear Schr\"odinger (NLS) equation. For the integrable cubic nonlinearity case we present a full asymptotic description of the DSW refraction by constructing appropriate exact solutions of the Whitham modulation equations in Riemann invariants. For the NLS equation with saturable nonlinearity, whose modulation system does not possess Riemann invariants, we take advantage of the recently developed method for the DSW description in non-integrable dispersive systems to obtain main physical parameters of the DSW refraction. The key features of the DSW-RW interaction predicted by our modulation theory analysis are confirmed by direct numerical solutions of the full dispersive problem.Comment: 45 pages, 23 figures, minor revisio

    Dynamic methods of identification of electromagnetic parameters of power transformers in non-stationary mode

    Get PDF
    The report reflects the promising solutions for the creation of adaptive protection means and emergency automatics in the implementation of methods of identification of dynamic systems. Presented original research assigned at directly addressing the causes of the sensitivity lack of the transformer equipment protection - compensation for the magnetizing current of the power transformers by linearizing their transfer characteristics

    Is weak temperature dependence of electron dephasing possible?

    Full text link
    The first-principle theory of electron dephasing by disorder-induced two state fluctuators is developed. There exist two mechanisms of dephasing. First, dephasing occurs due to direct transitions between the defect levels caused by inelastic electron-defect scattering. The second mechanism is due to violation of the time reversal symmetry caused by time-dependent fluctuations of the scattering potential. These fluctuations originate from an interaction between the dynamic defects and conduction electrons forming a thermal bath. The first contribution to the dephasing rate saturates as temperature decreases. The second contribution does not saturate, although its temperature dependence is rather weak, T1/3\propto T^{1/3}. The quantitative estimates based on the experimental data show that these mechanisms considered can explain the weak temperature dependence of the dephasing rate in some temperature interval. However, below some temperature dependent on the model of dynamic defects the dephasing rate tends rapidly to zero. The relation to earlier studies of the dephasing caused by the dynamical defects is discussed.Comment: 14 pages, 6 figures, submitted to PR

    Mesoscopic fluctuations of Coulomb drag between quasi-ballistic 1D-wires

    Get PDF
    Quasiballistic 1D quantum wires are known to have a conductance of the order of 2e^2/h, with small sample-to-sample fluctuations. We present a study of the transconductance G_12 of two Coulomb-coupled quasiballistic wires, i.e., we consider the Coulomb drag geometry. We show that the fluctuations in G_12 differ dramatically from those of the diagonal conductance G_ii: the fluctuations are large, and can even exceed the mean value, thus implying a possible reversal of the induced drag current. We report extensive numerical simulations elucidating the fluctuations, both for correlated and uncorrelated disorder. We also present analytic arguments, which fully account for the trends observed numerically.Comment: 10 pages including 7 figures. Minor changes according to referee report. Accepted for PR

    Holstein polarons in a strong electric field: delocalized and stretched states

    Full text link
    The coherent dynamics of a Holstein polaron in strong electric fields is considered under different regimes. Using analytical and numerical analysis, we show that even for small hopping constant and weak electron-phonon interaction, the original discrete Wannier-Stark (WS) ladder electronic states are each replaced by a semi-continuous band if a resonance condition is satisfied between the phonon frequency and the ladder spacing. In this regime, the original localized WS states can become {\em delocalized}, yielding both `tunneling' and `stretched' polarons. The transport properties of such a system would exhibit a modulation of the phonon replicas in typical tunneling experiments. The modulation will reflect the complex spectra with nearly-fractal structure of the semi-continuous band. In the off-resonance regime, the WS ladder is strongly deformed, although the states are still localized to a degree which depends on the detuning: Both the spacing between the levels in the deformed ladder and the localization length of the resulting eigenfunctions can be adjusted by the applied electric field. We also discuss the regime beyond small hopping constant and weak coupling, and find an interesting mapping to that limit via the Lang-Firsov transformation, which allows one to extend the region of validity of the analysis.Comment: 10 pages, 13 figures, submitted to PR

    Interactions, Distribution of Pinning Energies, and Transport in the Bose Glass Phase of Vortices in Superconductors

    Full text link
    We study the ground state and low energy excitations of vortices pinned to columnar defects in superconductors, taking into account the long--range interaction between the fluxons. We consider the ``underfilled'' situation in the Bose glass phase, where each flux line is attached to one of the defects, while some pins remain unoccupied. By exploiting an analogy with disordered semiconductors, we calculate the spatial configurations in the ground state, as well as the distribution of pinning energies, using a zero--temperature Monte Carlo algorithm minimizing the total energy with respect to all possible one--vortex transfers. Intervortex repulsion leads to strong correlations whenever the London penetration depth exceeds the fluxon spacing. A pronounced peak appears in the static structure factor S(q)S(q) for low filling fractions f0.3f \leq 0.3. Interactions lead to a broad Coulomb gap in the distribution of pinning energies g(ϵ)g(\epsilon) near the chemical potential μ\mu, separating the occupied and empty pins. The vanishing of g(ϵ)g(\epsilon) at μ\mu leads to a considerable reduction of variable--range hopping vortex transport by correlated flux line pinning.Comment: 16 pages (twocolumn), revtex, 16 figures not appended, please contact [email protected]

    Inference Rules in Nelson’s Logics, Admissibility and Weak Admissibility

    Get PDF
    © 2015, Springer Basel. Our paper aims to investigate inference rules for Nelson’s logics and to discuss possible ways to determine admissibility of inference rules in such logics. We will use the technique offered originally for intuitionistic logic and paraconsistent minimal Johannson’s logic. However, the adaptation is not an easy and evident task since Nelson’s logics do not enjoy replacement of equivalences rule. Therefore we consider and compare standard admissibility and weak admissibility. Our paper founds algorithms for recognizing weak admissibility and admissibility itself – for restricted cases, to show the problems arising in the course of study

    The first dozen years of the history of ITEP Theoretical Physics Laboratory

    Full text link
    The theoretical investigations at ITEP in the years 1945-1958 are reviewed. There are exposed the most important theoretical results, obtained in the following branches of physics: 1) the theory of nuclear reactors on thermal neutrons; 2) the hydrogen bomb project ("Tube" in USSR and "Classical Super" in USA); 3) radiation theory; ~4) low temperature physics; 5) quantum electrodynamics and quantum field theories; 6) parity violation in weak interactions, the theory of β\beta-decay and other weak processes; 7) strong interaction and nuclear physics. To the review are added the English translations of few papers, originally published in Russian, but unknown (or almost unknown) to Western readers.Comment: 55 pages, 5 fig
    corecore