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Quasiballistic one-dimensional quantum wires are known to have a conductance of the order of 2e2/h, with
small sample-to-sample fluctuations. We present a study of the transconductanceG12 of two Coulomb-coupled
quasiballistic wires; i.e., we consider the Coulomb drag geometry. We show that the fluctuations inG12 differ
dramatically from those of the diagonal conductanceGii : the fluctuations are large and can even exceed the
mean value, thus implying a possible reversal of the induced drag current. We report extensive numerical
simulations elucidating the fluctuations for both correlated and uncorrelated disorder. We also present analytic
arguments, which fully account for the trends observed numerically.
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I. INTRODUCTION

Recent advances in nanotechnology have made transport
studies of quantum wires an active field of study. Several
fabrication routes have become available: gated two-
dimensional~2D! electron gases, cleaved layer overgrowth
techniques, grooved high-index surfaces, or even nanotubes.
It is quite feasible that in future’s nanoelectronic components
several quantum wires are very closely spaced~spacingd is
of the order of the inverse screening wave vector!, and hence
the stray fields due to moving charges in one quantum wire
affect the motion of charges in the neighboring wires. Analo-
gous effects in coupled quantum wells have been intensively
studied for the last ten years~for a review, see Ref. 1! and
have become known as Coulomb drag. While only very few
experimental studies of coupled quantum wires have been
reported so far~however, see Refs. 2 and 3!, we believe that
more experiments will become available in the near future.

Coulomb drag of mesoscopic structures has been ad-
dressed theoretically in the case of 1D systems both within
the Boltzmann equation approach4,5 and for Luttinger liquids
with strong interwire interactions.6–11 For the latter case, the
interesting possibility of a regime with almost identical cur-
rents in the two wires has been predicted6–9 and also inter-
esting effects for drag between carbon nanotubes have been
found.9,10

Disorder will inevitably be present in all real samples.
The study of fluctuation phenomena in mesoscopic systems
is a mature field and has tremendously increased our under-
standing of the basic physics governing electronic transport
in solids. The observation and explanation ofuniversal con-
ductance fluctuations12 is one of the central achievements in
this field. It is then natural to ask, are similar phenomena
present in the case of Coulomb coupled systems? In other

words, what are the fluctuation properties of thetranscon-
ductance?

Quite recently the study of fluctuations of the Coulomb
drag was initiated by Narozhny and Aleiner.13 These ideas
were used by us to study various properties of Coulomb drag
in systems smaller than the Thouless energy.14,15 They pro-
vided answers to some aspects to the question phrased
above. In particular, in Ref. 13 it was shown that the fluctua-
tions will be pronounced for temperatures smaller than the
Thouless energy. In contrast to the universal conductance
fluctuations12 of the Landauer conductanceGii the fluctua-
tions of G21 are, however, nonuniversal and depend on tem-
perature and various system parameters.

In this work we focus on coupled quasiballistic 1D wires
~see Fig. 1! and show that even weak disorder can change the
ballistic properties drastically and give rise to new interest-

FIG. 1. ~a! Geometry of the two coupled 1D wires of lengthL
and separationd. ~b! Lattice model of the two 1D wires. Here,d

denote the lattice points of the wires~where Coulomb interaction
U12 is effective! ands denote those belonging to the ideal leads.
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ing phenomena. The paper also gives a more detailed deri-
vation of some technical results used in our recent Letter.14

We consider temperatures smaller than\vF /L so that in-
trawire interactions are effectively given by the Fermi liquid
reservoirs and where the screening can be considered to be
static. In this regime it is well known from calculation of
drag between clean Luttinger liquids that the intrawire inter-
actions have no pronounced effect.6,7 For the interwire inter-
action we consider the physical relevant regime with long-
range interaction whereU12(q50)@U12(q52kF).

Starting from the Kubo formula we derive an expression
for the transconductanceG21 similar to previous results16,17

but relaxing the assumption of translational invariance.14 We
formulate the problem with the help of the spectral function
and subsequently map it onto a tight-binding-like model suit-
able for a computer implementation. Our formalism allows
us to treat wires with electrons propagating in arbitrary po-
tentials. The fluctuations in drag between disordered wires
are studied by numerical ensemble averaging and also ana-
lytically with the disorder included perturbatively. We con-
sider two situations: uncorrelated and correlated disorder.
For the situation where the disorder potentials of the two
wires are mutually uncorrelated, as is usually assumed,13,14,17

we find large fluctuations of the order of the mean value and
thereby also a possible sign reversal of the drag current. If
the two disorder potentials are identical, i.e., mutually
correlated,18 we get large fluctuations and an enhanced mean
value compared to uncorrelated disorder. We also give some
results for the intermediate case. The case of fully correlated
disorder is in qualitative agreement with recent predictions
for 2D systems18 and for the fluctuations we predict an en-
hancement by a factor ofA2 which is confirmed numerically.

The obtained distributions are quite robust in the sense
that systems with different disorder strength and/or length
and separation can be rescaled to fall on the same curve.
However, the distributions also depend on the range of the
interactionU12 and in that sense they are nonuniversal.

The paper is organized as follows: in Sec. II we introduce
the formalism and in Sec. III we derive analytic results for
quasiballistic wires. Section IV contains our numerical re-
sults. Finally, in Sec. V discussions and conclusions are
given. Certain technical details can be found in the appen-
dixes.

II. FORMALISM

A. General formulation

Let us consider two 1D wires of lengthL ~shorter than the
phase-coherence lengthl f) parallel to each other with a
separationd; see Fig. 1. Our aim is to calculate the dc (V
→0) linear-response transconductanceG215]I 2 /]V1. In
the 1D situation the transconductance is equal to the
transconductivity which can be calculated from Kubo
formalism19 which expressesG21 in terms of the retarded
current-current correlation function:17

G215 lim
V→0

e2

\VE
0

`

d~ t2t8!exp@ iV~ t2t8!#

3^@ Ĵ2~x2 ,t !,Ĵ1~x1 ,t8!#&. ~1!

Here, Ĵi is the particle current operator of wirei 51,2. The
brackets indicate the quantum mechanical statistical average.
Due to current conservation,x1 andx2 can be chosen at any
position along the wires.20,21Using Matsubara formalism we
follow Ref. 17 and calculateG21 to second order in the in-
teractionU12 between the mesoscopic 1D wires. Intrawire
interactions are neglected, except for disorder potential scat-
tering. The expansion of the time-development operator to
second order inU12 gives rise to a current-current correlation
function which can be expressed as a product of two three-
point correlation functions: ^r̂1r̂1Ĵ1&U12U12̂ r̂2r̂2Ĵ2&,
wherer̂ i is the particle density operator. The three-point cor-
relation functions are evaluated with the aid of Wick’s theo-
rem and after some lengthy, but in principal straightforward
calculations, we arrive at

G215
e2

h E0

LE
0

LE
0

LE
0

L

dx18dx28dx19dx29E
2`

`

\ dv

3
D1~v,x18 ,x19!U12~x18 ;x28!U12~x19 ;x29!D2~v,x29 ,x28!

2kT sinh2~\v/2kT!
,

~2!

D i~v;x8,x9!5
1

4p

\2

2mE d«A«2\v
i ~x9,x8!

3@A«
i ~x,x9!]xA«

i ~x8,x!

2A«
i ~x8,x!]xA«

i ~x,x9!#

3@nF~«2\v!2nF~«!#2~v→2v!* , ~3!

A«
i ~x,x8!5 i @G «

i ~x,x8!2$G «
i ~x8,x!%* #

52p(
a

^xua&^aux8&d~«2«a!. ~4!

Here,A«
i is the spectral function,G «

i the retarded Green func-
tion, nF(«) the Fermi-Dirac distribution function, and«a is
the eigenvalue of the exact single-particle eigenstateua& in
the uncoupled wires. We furthermore assume spin degen-
eracy. The current-current correlation functionD1U12U12D2
is shown schematically in Fig. 2.

Equation~2! generalizes the results of Ref. 17 to broken
translational invariance, and Appendix A establishes a con-
nection to the expression employed in our recent Letter.14

FIG. 2. Diagrammatic representation of the current-current cor-
relation functionD1U12U12D2; see Eq.~2!.
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B. Lattice formulation

Writing the four spatial integrals in Eq.~2! as sums over
the functions on a discrete lattice~see Fig. 1!, we get

G215
e2

h E2`

`

\ dv
Tr@U12

T D1~v!U12D2~v!#

2kT sinh2~\v/2kT!
, ~5!

where the matrices have elements

$U12%nn85U12~x18→na;x28→n8a!, ~6!

$D i~v!%nn85
1

4p

\2

2ma2E d«$A«2\v
i %n8n

3@$A«
i % ñn8$A«

i %n,ñ112$A«
i %nñ$A«

i % ñ11,n8#

3@nF~«2\v!2nF~«!#2~v→2v!* , ~7!

$A«
i %nn8[a3A«

i ~x→na,x8→n8a!, ~8!

wheren,n851,2,3, . . . ,N label the lattice points anda is the
lattice constant; see Fig. 1~b!. In matrix notation,A«

i 5 i @G «
i

2$G «
i %†#. The derivative]x in D has been accounted for by

the method of finite differences22 and ñ can be any lattice
points 1,2,3, . . . ,N22,N21 due to current conservation.
Summing over the firstN21 lattice points and dividing by
N21 we find

D i~v!5
1

4p

\2

2ma2E d«$A«2\v
i %T

^ @A«
i LA«

i #

3@nF~«2\v!2nF~«!#2~v→2v!* , ~9!

where ^ denotes an element-by-element multiplication,$X
^ Y%nm5XnmYnm , and the matrixL has elements

Lnn85
6dn,n861

N21
. ~10!

The next step is to calculate the lattice representation of
the retarded Green functionsG 1 and G 2 of the two un-
coupled wires. Writing the Laplacian]x

2 in the wire Hamil-
tonians with the help of finite differences the problem of the
uncoupled wires is mapped onto tight-binding-like
Hamiltonians22

Hnn8
( i )

5~2t1$Vi%n!dnn82tdn,n861 , t5\2/2ma2. ~11!

A standard approach based on Dyson’s equation then gives
the retarded Green functions of the uncoupled wires as an
N3N matrix,22

G «
i 5@«2Hi2SL

i ~«!2SR
i ~«!#21, ~12!

where the couplings to leadp5L,R are taken care of by the
retarded self-energy,

$Sp
i ~«!%nn852t exp@ ik~«!a#dn,np

dnp ,n8 , ~13!

with nL51 and nR5N. The wave vector is related to the
energy through the usual cosine dispersion relation with a
bandwidth of 4t, i.e., «52t(12coska).

C. Low-temperature expansion

We now consider the low-temperature limitkT!«F
where we can evaluate the spectral functions in Eq.~3! at the
Fermi level. Performing the energy integration givesD i}v
and thev integration in Eq.~2! can now be done:

E
2`

`

\ dv
~\v!2

2kT sinh2~\v/2kT!
5

4p2

3
~kT!2, ~14!

and we getG21}T2. Equation~5! now simplifies to

G215
e2

h
~kT!2

t2

3
Tr@U12M1U12M2#, ~15!

where

Mi5Re$$A«F

i %T
^ @A«F

i LA«F

i #%. ~16!

Equation~15! forms the basis for all subsequent numerical
work.

The Landauer conductanceGii 5]I i /]Vi of the individual
wires can be expressed in a similar form22

Gii 5
2e2

h
Tr@GL

i ~«F!G«F

i GR
i ~«F!$G«F

i %†#, ~17!

where the leads are described by

Gp
i ~«!5 i @Sp

i ~«!2$Sp
i ~«!%†#. ~18!

The matrix formulation is readily implemented on a com-
puter and the accuracy can be increased simply by having
more lattice pointsN ~for a givenL).22 The retarded Green
function can be obtained either by a direct inversion as indi-
cated in Eq.~12! or by a recursive method; see, e.g., Ref. 23.

Alternatively one can also view Eqs.~15! and ~17! as
formulas for a tight-binding system wheret is a ‘‘hopping
matrix element’’ between different orbitals and the local po-
tential Vn12t is the energy of the orbital localized at siten.
Finally we note that the form of Eq.~15! is valid for any
number of transverse channels@for 2D and 3D systemsL in
Eq. ~10! should be modified to also contain an ‘‘integration’’
over the transverse direction in order to get the total current#
and thus provides a versatile starting point for investigations
of drag in different geometries.

D. Anderson model

For the study of disordered wires we use the Anderson
model with diagonal disorder24 where the site potentialsVn

i

of a given wire are statistically independent with each site
energy taken from a uniform distribution of widthW and
zero mean~see also Ref. 25!. The backscattering mean free
path l can be related to the disorder strengthW and in the
Born approximation we get~see Appendix B!

l 512a~4t«F2«F
2 !/W2. ~19!
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We will examine several different ways of realizing the
disorder in the two wires. These include a situation where
both wires are disordered, but withV1 andV2 mutually un-
correlated~as in Ref. 14!. We also present results for disor-
dered wires where the disorder is fully correlated, i.e.,V1
5V2 ~as suggested in Ref. 18!.

III. ANALYTICAL RESULTS

In this section we consider quasiballistic wires. For weak
disorder it is possible to make a perturbation expansion for
the fluctuations13 dG215G212^G21& ~brackets indicate en-
semble averaging!.

A. Fluctuations of the order of V2

An example of a lowest-order connected fluctuation dia-
gram is shown in Fig. 3. Due to momentum conservation, the
impurity line must carryq50 ~corresponding to forward
scattering! and the four interaction lines 2kF so that we es-
timate the magnitude as follows:

^@dG21#
2&}V2~0!U12

4 ~2kF!, ~20!

where V(q) and U12(q) are the Fourier transforms of the
disorder potential and the Coulomb interaction potential, re-
spectively. Though diagrams of orderV4 are parametrically
smaller, we shall see that they give the dominant contribution
in the case of long-range Coulomb interaction.

B. Fluctuations of the order of V4

Figure 4 shows examples of connected diagrams of the
order ofV4; now the impurity lines can carry bothq50 and
q52kF corresponding to backscattering. For backscattering
in the disorder channel, in the case of uncorrelated~uc! dis-
order we get the estimates

a:^@dG21#
2&uc}V4~2kF!U12

4 ~2kF!, ~21a!

b:^@dG21#
2&uc50, ~21b!

c:^@dG21#
2&uc}V4~2kF!U12

2 ~0!U12
2 ~2kF!, ~21c!

d:^@dG21#
2&uc50, ~21d!

where to lowest orderV2(2kF)}1/kFl so that

^@dG21#
2&1/2}1/kFl . ~22!

For a long-range Coulomb potentialU12(0)@U12(2kF) the
dominant contribution comes from diagramc which also
dominates parametrically over the contribution to second or-
der; see Eq.~20!. Screening mainly affects the small-q limit
of U12(q). The mean valuêG21&}U12

2 (q52kF) is thus only
weakly affected by screening whereas theV4 contributions to
the fluctuations will be strongly suppressed due to the pres-
ence of alsoU12

2 (q50); see Eqs.~21!. For sufficiently short-
range interaction theV2 contributions will eventually give
the dominant contribution@see Eq.~20!#, but then the overall
magnitude of the fluctuations will also be small compared to
the mean value.

For correlated disorder~c! all diagramsa, b, c, and d
contribute~equally! whereas for uncorrelated disorder only
the diagramsa andc are relevant. More generally, for each
topologically different diagram contributing in the case of
uncorrelated disorder there are two similar diagrams contrib-
uting equally in case of correlated disorder. Of course there
are also other possible diagrams in the case of correlated
disorder but to lowest order in 1/kFl this means that

^@dG21#
2&c

1/2

^@dG21#
2&uc

1/2
.A^a&1^b&1^c&1^d&

^a&1^c&

5A23^a&123^c&

^a&1^c&
5A2, ~23!

FIG. 3. Example of a first-order connected diagram in the dia-
grammatic expansion for the fluctuations giving rise to a
^@dG21#

2&}V2}1/kFl dependence. Due to momentum conserva-
tion, the impurity line must carryq50 and the four interaction lines
2kF .

FIG. 4. Examples of second-order connected diagrams in the
diagrammatic expansion for the fluctuations giving rise to a
^@dG21#

2&}V4}1/(kFl )2 dependence. Due to momentum conserva-
tion, diagrams with only one impurity line do not contribute to the
drag fluctuations. Diagrams~a! and ~c! are relevant for both corre-
lated and uncorrelated disorder whereas the diagrams in panels~b!
and ~d! are relevant for correlated disorder only.
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where^a&, ^b&, ^c&, and^d& refer symbolically to the dia-
grams in Fig. 4 averaged over disorder. This simple argument
suggests that the fluctuations in the case of correlated disor-
der will be enhanced by a factor ofA2 compared to the case
of uncorrelated disorder.

We now turn into a quantitative evaluation of the fluctua-
tions. In Appendix D we show howD i(x,x8) can be ex-
pressed in terms of scattering statesc6(x). We introduce a
shorthand notation

G215CE U12~x,y!U12~x8y8!D1~x,x8!D2~y8,y!, ~24!

with

D~x,x8!5Im$r̃12~x!r̃21~x8!%, ~25!

where* means an integral over all spatial degrees of free-
dom ~in this casex, x8, y, andy8). Here,r̃ are the particle
density matrix elements taken in a new basisc̃6(x) related
to the original basisc6(x) by a unitary transformation de-
scribed in Appendix D. The frequency integration has been
performed to give theT2 dependence and all prefactors are
included inC, i.e., C}(e2/h)(kT)2.

Before calculating the prefactor in Eq.~22! in the case of
uncorrelated disorder we first consider the transconductance
in the case of ideal ballistic wires. Using the free plane
wavesc̃6(x)5c6(x)5e6 ikFx we get

D̄~x,x8!5Im$e2 i2kFxei2kFx8%5sin2kF~x82x!. ~26!

The electrons in each wire can be either forward scattered
~zero momentum! or backscattered (2kF) and because of
momentum conservation both the interaction lines in the dia-
gram in Fig. 2 carry momentum 2kF ~zero momentum from
forward scattering does not contribute to drag in this situa-
tion! so that

G21~`!5C1

2
U12

2 ~2kF!, ~27!

where

U12~q!5E
0

LE
0

L

dx1dx2eiq(x12x2)U12~x1 ,x2!. ~28!

In what follows we often express the results for disordered
systems normalized with respect to the ballistic transconduc-
tanceG21(`).

The situation is very different even for weak disorder, and
the broken translational invariance allows for transferred mo-
mentum others than 2kF . For the diagrams in Fig. 4 the
impurity lines carry momentum 2kF corresponding to back-
scattering within the wires~forward scattering will not con-
tribute to the fluctuations!. However, the difference between
diagrams~a! and~c! is that in~a! the interaction lines in each
subdiagram must carry the same momentum whereas in~c!
one of them can carry, e.g., zero momentum while the other
carries 2kF . Now, sinceU12(0)@U12(2kF) for long-ranged
interaction@typically, U12(q) decays exponentially#, diagram

~c! gives the major contribution to the fluctuations. This can
be tested numerically by noting that diagram~a! is relevant
to the case where wire 1 is disordered and wire 2 is either
disordered or ballistic whereas diagram~c! is only relevant to
the case of both wires being disordered. Indeed, by numeri-
cally calculating the fluctuations for a system where one of
the wires is ballistic and the other disordered we have found
a very dramatic reduction~by more than an order of magni-
tude! of the fluctuations compared to the case of both wires
being disordered.

Considering wires with mutually uncorrelated disorder
and writing D(x,x8)5D̄(x,x8)1dD(x,x8) ~where the sec-
ond term is the correction to the ballistic limit! the contribu-
tion from diagram~c! is

^@dG21#
2&uc.C 2E U12~x,y!U12~x8,y8!U12~ x̄,ȳ!

3U12~ x̄8,ȳ8!^dD1~x,x8!dD1~ x̄,x̄8!&

3^dD2~y8,y!dD2~ ȳ8,ȳ!&, ~29!

and the remaining problem is to calculate the correlation

^dD i(x,x8)dD i( x̄,x̄8)& to lowest order~second order! in the
disorder strength. For quasiballistic wires (T512R;1)
Eqs.~D5! and ~D6! give

D~x,x8!'Im$r12~x!r21~x8!%, ~30!

with rab(x)5ca* (x)cb(x) in the original basis and formally
we thus have that

dD~x,x8!5Im$dr12~x!ei2kFx81e2 i2kFxdr12* ~x8!%.
~31!

Using the Lippmann-Schwinger equation26 we have to low-
est order in the disorder strength that

c6~x!.e6 ikFx1E
0

L

dx G0~x,x!V~x!e6 ikFx, ~32!

whereG0(x,x8)5( i\vF)21eikFux82xu is the unperturbed re-
tarded Green function. This means thatr12(x)5r12

0 (x)
1u(x)1n(x) where

u~x!5~ i\vF!21E
0

L

dx sign~x2x!V~x!r12
0 ~x!, ~33!

n~x!5~ i\vF!21E
0

L

dx sign~x2x!V~x!r12
0 ~x!. ~34!

Here, r12
0 (x)5exp(22ikFx). Thus we see thatu gives a

nonoscillating correction tor12
0 (x) which is the reason why

the Fourier componentU12(0) enters the end result instead
of U12(2kF). This is not the case forv and we can therefore
omit it. For the averages over disorder we use
^V(x)V(x8)&5W0

2d(x2x8) and neglecting terms oscillat-

ing with 4kF we get^u(x)u( x̄)&'0 and
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^u~x!u* ~ x̄!&5LS W0

\vF
D 2

~122ux2 x̄u/L !. ~35!

The prefactor can be related to the reflection coefficient of
the wire. To see this we consider the Dyson equation to sec-
ond order in the disorder,

G~x,x8!.G0~x,x8!1E
0

L

dx G0~x,x!V~x!G0~x,x8!

1E
0

L

dxE
0

L

dx8G0~x,x!V~x!G0~x,x8!

3V~x8!G0~x8,x8!, ~36!

and from the Fisher-Lee relation we notice thatR512T
512(\vF)2uG(L,0)u2. It then follows that to second order
in the disorder^R&.L(W0 /\vF)25L/ l ~the last equality
follows from Appendix B! so that

^u~x!u* ~ x̄!&5^R&~122ux2 x̄u/L !. ~37!

This means that

^dD~x,x8!dD~ x̄,x̄8!&5
^R&
2

$ f ~x82 x̄8,x2 x̄!

1 f ~x2 x̄,x82 x̄8!2 f ~x82 x̄,x2 x̄8!

2 f ~x2 x̄8,x82 x̄!%, ~38!

where f (x82 x̄8,x2 x̄)5(122ux82 x̄8u/L)cos 2kF(x2x̄).
Out of the 16 terms only 4 terms of the form cos(x

2x̄)cos(y2ȳ) are finite for long wireskFL@1 and we thus
get

^@dG21#
2&uc.C 2^R1&^R2&E U12~x,y!U12~x8,y8!

3U12~ x̄,ȳ!U12~ x̄8,ȳ8! f ~x2 x̄,x82 x̄8!

3 f ~y2 ȳ,y82 ȳ8!

5C 2
1

2
^R1&^R2&U12

2 ~2kF!Ũ12
2 ~0!. ~39!

This corresponds to the estimate in Eq.~21c!. Finally, the
mean value is close to the value for ballistic wires and nor-
malizing by Eq.~27! we get

^@dG21#
2&uc

1/2

G21~`!
.

@2^R1&^R2&U12
2 ~2kF!Ũ12

2 ~0!#1/2

U12
2 ~2kF!

, ~40!

where

Ũ12
2 ~0![E

0

LE
0

LE
0

LE
0

L

dx1dx2dx18dx28

3U12~x1 ,x2!U12~x18 ,x28!S 12
2ux12x18u

L D
3S 12

2ux22x28u
L D ,

and ^Ri&5L/ l . Equation~40! predicts the 1/l dependence
found in the qualitative discussion leading to Eq.~22!. It
follows that the relative magnitude of the fluctuations is of
the order̂ R&U12(0)/U12(2kF) and even thougĥR&!1 for
quasiballistic wires the effect of long-ranged interactions
U12(0)/U12(2kF)@1 can give rise to relative fluctuations of
order unity, i.e., fluctuations comparable to the mean value.
As we shall see in the next section, Eq.~40! is in excellent
agreement with our numerical results.

IV. NUMERICAL RESULTS

In this section we apply Eq.~15! to numerically evaluate
the statistical properties of ensembles of different disorder
configurations.

The numerical implementation was tested by first calcu-
lating the Landauer conductanceGii , Eq. ~17!, for various
geometries which can also be solved analytically. We have
also tested our use of the Anderson model for disordered
wires. By changing the ratiol /L from the localized regime
( l /L!1) to the delocalized regime (l /L@1) we have ob-
tained distributions, mean values, and fluctuations for the
Landauer conductanceGii which are in agreement with the
analytical results of Abrikosov.27 We have also compared our
lattice implementation, Eq.~15!, to analytical results~see
Appendix C! for drag between two ballistic wires. By mak-
ing the grid sufficiently fine Eq.~15! is capable of reproduc-
ing the curves in Fig. 7 which are based on Eq.~C3! with the
integrals evaluated numerically. Another test is the predicted
peaking ofG21 at the onset of modes in either of the two
wires14 and for systems with resonance transmission~peaks
in Gii ); we find this to be borne out by our lattice implemen-
tation.

For the study of drag between disordered wires we con-
sider quarter-filled bands («F5t) and wires withN5100
lattice points so thatkFL5(p/3)3100. The separation is
kFd51 and for simplicity we assume an unscreened Cou-
lomb interaction

$U12%nn85
e2

4pe0e rA~n2n8!2a21d2
. ~41!

For a discussion on how to include an effective screened
interaction ~e.g., within the random-phase approximation!
see, e.g., Ref. 17 and references therein.

For the casel 536L ~this corresponds toW5«F/10) the
disorder has as expected27 almost no effect on the Landauer
conductance, i.e.,̂Gii &;2e2/h with vanishing fluctuations.
However, for the transconductance the situation is very dif-
ferent. Panel~a! of Fig. 5 shows a typical histogram of
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G21( l )/G21(`) @whereG21(`) is the result in the ballistic
regime; see Appendix C# for l 536L in the case of uncorre-
lated disorder. Depending on the disorder configuration
G21( l ) can be either higher or lower than in the ballistic
regime. The enhancement occurring for certain disorder con-
figurations can be understood physically as follows. The lack
of translational invariance allows forward scattering~trans-
ferred momentumq.0), which normally has little effect, to
cause transitions between scattering states with opposite di-
rections, thus contributing to the drag. We emphasize that the
histogram peaks close to the ballistic value and not at zero
drag; i.e., the mean drag is finite and positive. The variance

is of the same order as the mean value so that sign reversal
for some disorder realizations is possible. The latter is rep-
resented by the negative tail in the histogram. The sign of the
drag is thus arbitrary in the sense that both positive and nega-
tive drag can be observed.

For the distribution of G21 we find that Puc(x)
}exp@2u(x2x̄)/x̃ua# with a.1.4 fits surprisingly well to the
data. However, this observation does not exclude the possi-
bility that other functions may be fitted equally well.28 In fact
we have performed these fits to histograms forkFl ranging
from 103 to 105 with kFL in the range 100–300 and find
indications thata;1.4–1.5 which by rescaling ofG21 makes
it possible to let all histograms fall onto the same curve.
However, the distribution is nonuniversal in the sense that it
depends on the range of the interactionU12.

For the same system parameters but now with fully cor-
related disorder we get a very different distribution as seen in
panel ~c! of Fig. 5. In this situation the mean transconduc-
tance is enhanced compared to the uncorrelated case. This
confirms at least qualitatively the predictions for 2D systems
of Ref. 18. The mean fluctuations are also enhanced~we
return to the enhancement below!. However, since the mean
transconductance is enhanced by almost a factor of 2 com-
pared to the ballistic limit this also means that there is no
disorder configurations giving rise to negative drag. For
partly correlated disorder, panel~b!, the distribution is
shifted to a higher mean value and the shape is also slightly
changed with an increase in the magnitude of the fluctua-
tions.

In Fig. 6 we show the dependence of the fluctuations on
the mean free pathl which has the expected 1/kFl depen-
dence; see Eq.~22!. We also notice that correlated disorder
gives rise to slightly larger fluctuations compared to uncor-
related disorder. In fact they are exactly enhanced by a factor
of A2 as predicted; see Eq.~23!.

V. DISCUSSION AND CONCLUSION

We have studied drag of Coulomb-coupled disordered
mesoscopic 1D wires and developed a formalism for inves-

FIG. 5. Histograms forG21( l ) normalized by the ballistic result
G21(`). The histograms are based on.104 disorder configurations
and for all three histograms the mean free path isl 536L. Panel~a!
is for the situation of mutually uncorrelated disorder, panel~b! for
partly correlated disorder (Wc5Wuc), and panel~c! is for mutually
fully correlated disorder.

FIG. 6. Plot of fluctuationŝ@dG21( l )#2&1/2 as a function of the
mean free pathkFl . In both cases the expected 1/l behavior, Eq.
~22!, is borne out by the numerical calculations. The solid lines are
Eq. ~40! with no free parameters. The expected enhancement, Eq.
~23!, for correlated disorder by a factor ofA2 compared to uncor-
related disorder is also confirmed by the numerical calculations.
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tigating the statistical properties both analytically and nu-
merically. In this work we have focused on the quasiballistic
regime with L! l . For the ordinary Landauer conductance
Gii this is experimentally a somewhat trivial regime since
weak disorder has almost no effect and^Gii &;2e2/h with
vanishing fluctuations. However, surprisingly this same re-
gime ~which can be achieved experimentally! offers rich
physics when measuring transconductance between two
Coulomb-coupled wires. In this work we report results of the
statistical properties of the transconductanceG21 including
its distribution function. Depending on the disorder configu-
ration the transconductance can be either positive or negative
and even though the mean value is close to the ballistic value
the fluctuations can be of the same order of magnitude. This
is fully explained by analytical calculations including the
weak disorder perturbatively. The effect can be explained by
a combination of disorder induced backscattering in the
wires and forward scattering between the wires induced by
Coulomb interaction.

We have also studied the recently proposed situation18

where the electrons in the two wires experience a common
disorder potential. In this case we also find that even weak
disorder gives rise to pronounced fluctuations and also a con-
siderable enhancement of the mean transconductance.

The reported distribution functions have been successfully
fitted by simple analytical expressions. Although there are no
analytical predictions for the exact functional form, these
initial results suggest that a more detailed analytical investi-
gation could be rewarding.

Finally, let us note that while this work has focused on
L! l , for multimode wires also the diffusive and localized
regimes25,29 with L. l seem to be a promising direction for
future work.14
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APPENDIX A: FORMULATION IN TERMS OF SPECTRAL
FUNCTIONS

We start from Eq.~2! of Ref. 14. With a knowledge of the
exact eigenstates of the isolated wires the expression points
out a direct way of calculating the transconductance and it is
possible to simplify this expression for ballistic wires where
the eigenstates are known analytically; see Appendix C.
However, in most cases the eigenstates are not known and it
is useful to make a numerically more appropriate formula-
tion in terms of the retarded lattice Green function. Using
that the current matrix element can be written as

^auĴ~x!ub&5
\

2mi
lim
x̃→x

] x̃@^aux&^x̃ub&2^aux̃&^xub&#,

~A1!

and by introducing the factor 15* d« d(«2«a) into Eq. ~2!
of Ref. 14 we get the result in Eq.~3!. In the second term we

have used that the interchangex8↔x9 corresponds to a sign
change along with a complex conjugation.

APPENDIX B: MEAN FREE PATH IN THE ANDERSON
MODEL

For a tight-binding chain withN sites and no disorder we
have eigenstatesck(n)5N21/2exp(ikna). We calculate the
rate for forward scattering (1) and backscattering (2) from
Fermi’s golden rule

1

t6~k!
5

2p

\ (
k8

u^ck8uVuck&u2d~«2«8!
16kk8/ukuuk8u

2
,

~B1!

whereV is the disorder potential which is treated as a per-
turbation. For a chain with largeN we take the sum into an
integral and since d(«2«8)5u\vku21@d(k2k8)1d(k
1k8)# we get

1

t6~k!
5

a

N\2uvku
(
nm

ei (171)k(n2m)aVnVm . ~B2!

In the Anderson model24 the different sites are uncorre-
lated and p(Vn)5Q(W/22Vn)/W which means that
^Vn Vm&5^Vn

2&dnm5W2/12dnm . The corresponding mean
free path is given byl (k)5vk /^t6

21(k)& ~forward scattering
and backscattering give rise to the same result! and for «
52t(12coska) we get the result in Eq.~19! at the Fermi
level. The result agrees with Ref. 25 except for a constant
shift of the energy by 2t.

APPENDIX C: BALLISTIC REGIME

For ballistic wires the eigenstates are of the formck(x)
5L21/2exp(ikx) with «5\2k2/2m. The spectral function, Eq.
~4!, is then given by

A«~x,x8!5k~«!cos@k~«!~x82x!#/«. ~C1!

We consider the low-temperature limitkT!«F where we can
evaluate the spectral functions in Eq.~3! at the Fermi level
so that

D i~v,x8,x9!5
m

2p\2

\v

«F
sin@2kF~x82x9!#. ~C2!

Thev integration in Eq.~2! can now be performed and using
Eq. ~14! we get

G215
e2

h

1

12S kT

«F
D 2S 2m

\2 D 2

3E
0

LE
0

LE
0

LE
0

L

dx18dx28dx19dx29sin@2kF~x182x19!#

3U12~x18 ;x28!U12~x19 ;x29!sin@2kF~x282x29!#. ~C3!
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In general the integrals have to be calculated numerically
and only in the limitkFL@1 ~the limit also studied in Ref. 5!
we have the asymptotic result

G21.
e2

h

1

6 S kT

«F

U~kF
21!

«F
kFL K0~2kFd! D 2

, ~C4!

whereK0 is a modified Bessel function of the second kind of
order zero.30 Here, we have assumed unscreened Coulomb
interaction @see Eq. ~41!# and introduced U(r )
5e2/(4pe0e r r ). Figure 7 shows a numerical evaluation of
Eq. ~C3! along with the asymptotic result, Eq.~C4!.

APPENDIX D: FORMULATION IN TERMS OF
SCATTERING STATES

We start from Eq.~4! in Ref. 14 using scattering states at
the Fermi level as our basis:$c1(x),c2(x)% where1 ~2! is
for a state incident from the left~right! lead. All matrix ele-
ments I ab and rab can then be considered as elements of
232 matrices:I andr. Due to current conservation, we are
free to evaluate the current matrix element in the leads~out-
side the region with elastic scattering! which gives I
5(vF /L)J with

J5~t32S†t3S!/25S T 2ARTei (f2u)

2ARTe2 i (f2u) 2T D ,

~D1!

wheret3 is the third Pauli matrix and

S5S r t

t r 8
D 5S AReiu ATeif

ATeif 2ARei (2f2u)D ~D2!

is the usual unitary scattering matrix in the presence of time-
reversal symmetry (SS†51̂ and S5ST). In the second
equality the scattering probabilitiesT5utu2 and R512T
5ur u25ur 8u2 have been introduced. Equation~4! in Ref. 14
can now be written as

D~v,x,x8!5p2\v
\vF

L
Tr$J@r~x!;r~x8!#%, ~D3!

where@A;B#5AB2BA is a commutator withA andB being
matrices. Next we employ a unitary transformation

U5S u 2v

v* u* D , ~D4!

with uuu21uvu251, which satisfiesUJU †5ATt3 by choos-
ing uuu25 1

2 (11AT ), uvu25 1
2 (12AT ), and vu*

5 1
2 ARei (f2u) ~in a concrete calculation it can be useful to

use the freedom to choose the phases asv5uvuei (f2u)/2 and
u5uuue2 i (f2u)/2). It is then easy to obtain the very compact
result

D~v,x,x8!54p2\v
\vF

L
AT i Im$r̃12~x!r̃21~x8!%,

~D5!

where in the new basisr̃(x)5U †r(x)U. With the choice of
relative phase mentioned above we have in particular

r̃12~x!5
ei (f2u)

2
@AR@r22~x!2r11~x!#

1~11AT !r12~x!2~12AT !r12* ~x!#.

~D6!
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