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Quasiballistic one-dimensional quantum wires are known to have a conductance of the oreféhofadth
small sample-to-sample fluctuations. We present a study of the transconduGtgrdeéwo Coulomb-coupled
quasiballistic wires; i.e., we consider the Coulomb drag geometry. We show that the fluctuat@®psdiffer
dramatically from those of the diagonal conducta&ge: the fluctuations are large and can even exceed the
mean value, thus implying a possible reversal of the induced drag current. We report extensive numerical
simulations elucidating the fluctuations for both correlated and uncorrelated disorder. We also present analytic
arguments, which fully account for the trends observed numerically.
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I. INTRODUCTION words, what are the fluctuation properties of thenscon-
ductancé

Recent advances in nanotechnology have made transport Quite recently the study of fluctuations of the Coulomb
studies of quantum wires an active field of study. Severafirag was initiated by Narozhny and AleirérThese ideas
fabrication routes have become available: gated twowere used by us to study various properties of Coulomb drag
dimensional(2D) electron gases, cleaved layer overgrowthin Systems smaller than the Thouless enefd§.They pro-
techniques, grooved high-index surfaces, or even nanotubegded answers to some aspects to the question phrased
It is quite feasible that in future’s nanoelectronic component@POVve. In particular, in Ref. 13 it was shown that the fluctua-
several quantum wires are very closely spatghcingd is tions will be pronounced for temperatures smaller than the
of the order of the inverse screening wave vectand hence Thouless energy. In contrast to the universal conductance

H 2
the stray fields due to moving charges in one quantum Wiréluctuatloné of the Landauer conductane®; the fluctua-

affect the motion of charges in the neighboring wires. Analo-tlons 0f Gy, are, however, nonuniversal and depend on tem-
rature and various system parameters.

. ; - pe
gous effects in coupled quantum wells have been mtenswel(} In this work we focus on coupled quasiballistic 1D wires

studied for the last ten yeatfor a review, see Ref.)land (see Fig. 1and show that even weak disorder can change the

: . i YWoallistic properties drastically and give rise to new interest-
experimental studies of coupled quantum wires have been

reported so fathowever, see Refs. 2 and, 3ve believe that
more experiments will become available in the near future. (a)

Coulomb drag of mesoscopic structures has been ad- I% = M
dressed theoretically in the case of 1D systems both within
the Boltzmann equation approdctand for Luttinger liquids
with strong interwire interactior’s:*! For the latter case, the X< X
interesting possibility of a regime with almost identical cur- i=2
rents in the two wires has been prediéetand also inter-
esting effects for drag between carbon nanotubes have been (b)
found®10

Disorder will inevitably be present in all real samples.
The study of fluctuation phenomena in mesoscopic systems a
is a mature field and has tremendously increased our under- w00y & I I LS | 2 20200
standing of the basic physics governing electronic transport
in solids. The observation and explanationuofiversal con- FIG. 1. (a) Geometry of the two coupled 1D wires of lengdth
ductance fluctuatiort is one of the central achievements in and separatio. (b) Lattice model of the two 1D wires. Her@®
this field. It is then natural to ask, are similar phenomenadenote the lattice points of the wiréshere Coulomb interaction
present in the case of Coulomb coupled systems? In other,, is effective andO denote those belonging to the ideal leads.

A
p=L -] ——— d4> p=R
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ing phenomena. The paper also gives a more detailed deri- pr(x?) Ure(2f;23)  pa(al)
vation of some technical results used in our recent Létter.

We consider temperatures smaller than: /L so that in-
trawire interactions are effectively given by the Fermi liquid
reservoirs and where the screening can be considered to b (z;) Jo(z2)
static. In this regime it is well known from calculation of
drag between clean Luttinger liquids that the intrawire inter-
actions have no pronounced effé¢tFor the interwire inter-
action we consider the physical relevant regime with long- PL(E1)  Upa(zi;zh) Po(a3)
range interaction wherd ;5(q=0)>U 1,(q=2kg). _ _ )

Starting from the Kubo formula we derive an expression F_IG. 2. Dlggrammatlc representation of the current-current cor-
for the transconductand®,; similar to previous resut§1’  relation functiond;Uy,U;0A; see Eq(2).
but relaxing the assumption of translational invariatfoale R
formulate the problem with the help of the spectral functionHere, J; is the particle current operator of wiie=1,2. The
and subsequently map it onto a tight-binding-like model suit-brackets indicate the quantum mechanical statistical average.
able for a computer implementation. Our formalism allowsDue to current conservatior; andx, can be chosen at any
us to treat wires with electrons propagating in arbitrary po-position along the wire§>?! Using Matsubara formalism we
tentials. The fluctuations in drag between disordered wiresollow Ref. 17 and calculat&,, to second order in the in-
are studied by numerical ensemble averaging and also angeractionU,, between the mesoscopic 1D wires. Intrawire
lytically with the disorder included perturbatively. We con- interactions are neglected, except for disorder potential scat-
sider two situations: uncorrelated and correlated disordegering. The expansion of the time-development operator to
For the situation where the disorder potentials of the twosecond order it ;, gives rise to a current-current correlation
wires are mutually uncorrelated, as is usually assuletf,”  function which can be expressed as a product of two three-
we find large fluctuations of the order of the mean value an(lﬂf)omt correlation  functions: <;)1;)131>U12U 1z<ﬁzﬁzjz>,

thereby also a possible sign reversal of the drag current. - . . ;
the two disorder potentials are identical, i.e., mutuaIIyWher.ePi is the particle density operator. The three.—pc,)lnt cor-
correlated® we get large fluctuations and an enhanced meat'ielatlon functions are evaluated W'th t_he_ald of chks theo-
value compared to uncorrelated disorder. We also give someg™M anq after some lengthy, but in principal straightforward
results for the intermediate case. The case of fully correlateﬁalcmat'ons’ we arrive at
disorder is in qualitative agreement with recent predictions e? (L (L (L (L w
for 2D system¥’ and for the fluctuations we predict an en- Gle—f J’ f f dxidxédx{dng’ fdw
hancement by a factor af2 which is confirmed numerically. hJoJoJoJo e

The obtained distributions are quite robust in the sense
that systems with different disorder strength and/or length
and separation can be rescaled to fall on the same curve. 2K T sint? (% w/2KT)

However, the distributions also depend on the range of the

XAl(w,Xi,X,1’)U12(X£;Xé)Ulz(Xg;X;)Az(w,XE,Xé)

interactionU, and in that sense they are nonuniversal. 2
The paper is organized as follows: in Sec. Il we introduce 1 #2

the formalism and in Sec. Ill we derive analytic results forap.(w;x’ x")= — —| deA._, (X",x")

. .. . . . . I [EAN] A7 2m e—hw ’
quasiballistic wires. Section IV contains our numerical re-
sults. Finally, in Sec. V discussions and conclusions are [ " iy

) o ) ; . X
given. Certain technical details can be found in the appen- [A XX A (X X)
dixes. —AL(X',X)d,AL(X,X")]
Il. FORMALISM X[Np(e—hw)—ng(e)]—(0——w)*, (3)

A. General formulation i i i
A(x,X")=1[G (X, X") ={G (X", x)}* ]
Let us consider two 1D wires of length(shorter than the
phase-coherence lengtfy) parallel to each other with a
separatiord; see Fig. 1. Our aim is to calculate the d@ (
—0) linear-response transconductanGg,=dl,/dV,. In , ,
the 1D situation the transconductance is equal to thélere,A, is the spectral functior7, the retarded Green func-
transconductivity which can be calculated from Kubotion, ng(e) the Fermi-Dirac distribution function, anel, is
formalismt® which expresse&s,; in terms of the retarded the eigenvalue of the exact single-particle eigenstajein

=253 (a)(al)de-c,). @

current-current correlation function: the uncoupled wires. We furthermore assume spin degen-
5 eracy. The current-current correlation functidpU ;,U 15A 5
L - is sh hematically in Fig. 2
Gyy= hm—f d(t—t")exgiQ(t—t’ IS shown sc yInrg. 2.
2 ohQ o ( Jex 164 )] Equation(2) generalizes the results of Ref. 17 to broken
. . translational invariance, and Appendix A establishes a con-
X{[Ja(X2,1),d1(Xq,t")]). (1) nection to the expression employed in our recent Léfter.

085317-2
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B. Lattice formulation

Writing the four spatial integrals in Eq2) as sums over
the functions on a discrete latti¢see Fig. 1, we get

e? (= TULA ((0)U A (o
GZl:_f 5 dw [ 12A.1( YU 1A 5(w)] 5

hJ 2k T sintf (% w/2KT)

where the matrices have elements
{U ot =U(Xj—na;x;—n’a), (6)
1 #4? i

{Ai(w)}nn’zﬂ 2ma2f ds{Asfhw}n’n
XA e AA 0 71— A ALY s 107
X[Ne(e—hw)—ne(e)]—(0— —w)*, (7)
{Al} n=axAl(x—nax'—n’'a), (8)

wheren,n"=1,2,3 ... N label the lattice points anais the
lattice constant; see Fig(l). In matrix notation AL=i[G

—{QL}T]. The derivatived, in A has been accounted for by

the method of finite differencésandn can be any lattice

points 1,2,3...,N—2N—-1 due to current conservation.

Summing over the firsN—1 lattice points and dividing by
N—1 we find

1 hz i T i i
Ai(w): E Zmazj ds{As*hw} ®[A£AA8]

X[Ne(e—hw)—ng(e)]—(0— —w)*,

©)

where ® denotes an element-by-element multiplicatifX,
®Y}am=XnmYnm, and the matrixA has elements

i5n,n’tl

A =977

(10

The next step is to calculate the lattice representation o

the retarded Green functiong® and G2 of the two un-
coupled wires. Writing the Laplaciaﬁﬁ in the wire Hamil-

tonians with the help of finite differences the problem of theEq (10) should be modified to also contain an *
tight-binding-like . .

uncoupled wires is
Hamiltoniang?

mapped onto

H(i) :(2t+{vi}n)5nn’_t5n,n’tlv t:ﬁzlzmaz' (11)

nn’

A standard approach based on Dyson’s equation then gives

PHYSICAL REVIEW 85 085317

with n_.=1 andng=N. The wave vector is related to the
energy through the usual cosine dispersion relation with a
bandwidth of 4, i.e.,e=2t(1—coska).

C. Low-temperature expansion

We now consider the low-temperature lIMKT<ep
where we can evaluate the spectral functions in(Bpat the
Fermi level. Performing the energy integration gives: w
and thew integration in Eq(2) can now be done:

| na ol 4712 s
L Y KT sintR(hwl2kT) 3 ’
and we geiG,,x T?. Equation(5) now simplifies to
e? t2
621=F(kT)2§Tr[U12M 1U1M5], (15
where
M;=Re{{A, }T®[A; AA, 1}. (16)

Equation(15) forms the basis for all subsequent numerical
work.

The Landauer conductanG; =4l /dV; of the individual
wires can be expressed in a similar f6fm

2

e . o ‘
Gn=TTr[FL(sF)QLFF'R(sF){QLF}T], 17)

where the leads are described by
Th(e)=i[Zy(s) —{Zp(e)}']. (18)

The matrix formulation is readily implemented on a com-
puter and the accuracy can be increased simply by having
more lattice pointaN (for a givenL).?? The retarded Green
function can be obtained either by a direct inversion as indi-
cated in Eq(12) or by a recursive method; see, e.g., Ref. 23.

Alternatively one can also view Eq$15) and (17) as
formulas for a tight-binding system whetes a “hopping

atrix element” between different orbitals and the local po-
ential V,+ 2t is the energy of the orbital localized at site
Finally we note that the form of Eq15) is valid for any
number of transverse channéfsr 2D and 3D systema in
integration”
over the transverse direction in order to get the total cufrent
and thus provides a versatile starting point for investigations
of drag in different geometries.

D. Anderson model

the retarded Green functions of the uncoupled wires as an For the study of disordered wires we use the Anderson

NX N matrix2?

GL=[e—H'=3|(e)—Sk(e)] Y, (12)

where the couplings to lego=L,R are taken care of by the

retarded self-energy,

{Zh(e)tan=—texdik(e)aldnn oy ors  (13)

model with diagonal disord&t where the site potentialg,

of a given wire are statistically independent with each site
energy taken from a uniform distribution of widi¥v and
zero mear(see also Ref. 25 The backscattering mean free
pathl can be related to the disorder strengthand in the
Born approximation we gdisee Appendix B

| =12a(4tep—e2)/W?. (19

085317-3
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AvaVe Vel

FIG. 3. Example of a first-order connected diagram in the dia-
grammatic expansion for the fluctuations giving rise to a
([ 6G]?)cV2x1/kel dependence. Due to momentum conserva-
tion, the impurity line must carrg=0 and the four interaction lines
ZkF.

We will examine several different ways of realizing the  FIG. 4. Examples of second-order connected diagrams in the
disorder in the two wires. These include a situation whereliagrammatic expansion for the fluctuations giving rise to a
both wires are disordered, but with, andV, mutually un- ([ 6G,,]?)« V4= 1/(kel)? dependence. Due to momentum conserva-
correlated(as in Ref. 14. We also present results for disor- tion, diagrams with only one impurity line do not contribute to the
dered wires where the disorder is fully correlated, i\¢,, drag fluctuations. Diagram) and(c) are relevant for both corre-
=V, (as suggested in Ref. 18 lated and uncorrelated disorder whereas the diagrams in pdmels

and(d) are relevant for correlated disorder only.

IIl. ANALYTICAL RESULTS

d:([ 5G1]?)uc=0, 21
In this section we consider quasiballistic wires. For weak {[0G21 e 21d
disorder it is possible to make a perturbation expansion fof, \ .o to lowest ordev?(2ke) e 1/ke| so that
the fluctuations’ 8G,;=G,—(G,,) (brackets indicate en- (2ke) o Lk
semble averagi
ging ([ 6G1]2) Y2 1kl . (22
A. Fluctuati f the order of V2 .
vciuations of the order o . ~ For a long-range Coulomb potentidl;,(0)>U,(2kg) the
An example of a lowest-order connected fluctuation dia-dominant contribution comes from diagramwhich also
gram is shown in Fig. 3. Due to momentum conservation, thejominates parametrically over the contribution to second or-
impurity line must carryg=0 (corresponding to forward der; see Eq(20). Screening mainly affects the smalimit
s_catterlng and th_e four mteractpn lineskg so that we es-  of U,,(q). The mean valuéG,,)=UZ2,(q=2k) is thus only
timate the magnitude as follows: weakly affected by screening whereas Yecontributions to
the fluctuations will be strongly suppressed due to the pres-
2 2 4
{[8G21]") VA O) U1 2Kke), 20 ence of alsdJ?,(q=0); see Eqs(21). For sufficiently short-
where V(q) and U;,(q) are the Fourier transforms of the range in_teraction t_hé/z_ contributions will eventually give
disorder potential and the Coulomb interaction potential, rethe dominant contributiofsee Eq(20)], but then the overall
spectively. Though diagrams of ordef are parametrically magnitude of the fluctuations will also be small compared to
smaller, we shall see that they give the dominant contributioihe mean value.

in the case of long-range Coulomb interaction. For correlated disordefc) all diagramsa, b, ¢, andd
contribute (equally whereas for uncorrelated disorder only
B. Fluctuations of the order of V4 the diagramsa andc are relevant. More generally, for each

) ) topologically different diagram contributing in the case of
Figure 44 shows examples of connected diagrams of thgncorrelated disorder there are two similar diagrams contrib-
order ofV"; now the impurity lines can carry boti=0 and  yting equally in case of correlated disorder. Of course there
q=2kg corresponding to backscattering. For backscatteringyre also other possible diagrams in the case of correlated

in the disorder channel, in the case of uncorreldteml dis-  disorder but to lowest order in KAl this means that
order we get the estimates

a:([ 5G] ue VA 2ke ) U 2Ke), (213 ([6G11%%  [a)+(b)+(c)+(d)

212 a>+<C>
bi([ 8G211%)uc=0. (21D ([8G21]")uc (

3 2><<a>+2><<c>_\/E 03
c:([8G2]2)uct VH(2Kp) UEA0) U2 2Ke), (210 N @ V> B

085317-4
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where(a), (b), (c), and(d) refer symbolically to the dia- (c) gives the major contribution to the fluctuations. This can
grams in Fig. 4 averaged over disorder. This simple argumertie tested numerically by noting that diagrda) is relevant
suggests that the fluctuations in the case of correlated disote the case where wire 1 is disordered and wire 2 is either
der will be enhanced by a factor 2 compared to the case disordered or ballistic whereas diagréhis only relevant to

of uncorrelated disorder. the case of both wires being disordered. Indeed, by numeri-

We now turn into a quantitative evaluation of the fluctua-cally calculating the fluctuations for a system where one of
tions. In Appendix D we show howA;(x,x’) can be ex- the wires is ballistic and the other disordered we have found
pressed in terms of scattering states(x). We introduce a a very dramatic reductiotby more than an order of magni-
shorthand notation tude of the fluctuations compared to the case of both wires
being disordered.

Considering wires with mutually uncorrelated disorder
and writing A(x,x")=A(x,x")+ SA(x,x") (where the sec-
ond term is the correction to the ballistic limithe contribu-
tion from diagram(c) is

Glecf Up(X,Y)U X"y )A1(X,X")As(Y"y), (24)
with

AxX)=Im{p,_(X)p_.(x)}, (25) o

2 2 roy,!
where [ means an integral over all spatial degrees of free- ([6Ga]ue=C f UsX,y)Usax",y ) U1 Xxy)
dom (in this casex, x’, y, andy’). Here,p are the particle

density matrix elements taken in a new bagis(x) related

to the original basis/..(x) by a unitary transformation de- X(8A(y",Y) 5A2(V’ ,V)% (29)

scribed in Appendix D. The frequency integration has been

performed to give thd? dependence and all prefactors areand the remaining problem is to calculate the correlation

included inC, i.e.,C(e’/h)(kT)>. (8A;(x,x") 8A;(x,x")) to lowest ordersecond ordeérin the
Before calculating the prefactor in E@®2) in the case of  disorder strength. For quasiballistic wire§=1—R~1)

uncorrelated disorder we first consider the transconductangeys. (D5) and (D6) give

in the case of ideal ballistic wires. Using the free plane

wavesi..(x) = .. (x) ="~ we get A =Im{p_(X)p_+(X')}, (30

XUpo(X",y ) 8A1(%,X") 8A1(%,X"))

A(x,x")=Im{e~ 12kl 2keX Y = sin2ke(x’ —X).  (26) with p,,g(x) = ¢ (X) ¥ 5(x) in the original basis and formally
we thus have that
The electrons in each wire can be either forward scattered

(zero momentum or backscattered (&) and because of " i2kex! | A i2KgX § % /
momentum conservation both the interaction lines in the dia- SA0GX)=Im{ dp. - ()& +e TS ( )}'(31)
gram in Fig. 2 carry momentumk? (zero momentum from

forward scattering does not contribute to drag in this situaUsing the Lippmann-Schwinger equatférwe have to low-
tion) so that est order in the disorder strength that

1
Gaale) = C5 U3 2Ke), (27) b= [y ol VOneTe, (@2

where "N (i —1aike|x = x| -
where Go(X,X')=(ihvg) "€ is the unperturbed re

L (L o tarded Green function. This means th&t_(x)=p9r_(x)
U12(Q):fo fo dx;dx e IU 15(x1,%p). (28 +u(x) + v(x) where

In what follows we often express the results for disordered . .t .
systems normalized with resl?)ect to the ballistic transconduc- U = (1ve) 1f0 dx signx—x)V(et - (x), (33
tanceGy().

The situation is very different even for weak disorder, and L
the broken translational invariance allows for transferred mo- v(x)=(ihvp)’lf dy signx—x)V(x)p° _(x). (34
mentum others thank. For the diagrams in Fig. 4 the 0
impurity lines carry momentumkg corresponding to back- . .
scgtter?;]g within tr):e wirefsforwalﬁ:j scatteﬁng wil(‘I:J not con- Here, p.ﬂ,(.x)zexp(—.2|kpx)b Thus we see thabl gives a
tribute to the fluctuations However, the difference between nonoscillating correction tp-. _(x) which is the reason why
diagrams(@) and (c) is that in(a) the interaction lines in each the Fourier componeriti;(0) enters the end result instead
subdiagram must carry the same momentum wheregs)in Of U12(2kg). This is not the case far and we can therefore
one of them can carry, e.g., zero momentum while the othepMit it. For the averages over disorder we use
carries Xg . Now, sinceU,(0)>U,(2kg) for long-ranged  (V(X)V(x'))=Wzs(x—x') and neglecting terms oscillat-
interaction[typically, U5(q) decays exponentiallydiagram  ing with 4k we get(u(x)u(x))~0 and

085317-5
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_ W, |2 _ - L (L (L (L o
(u(xX)u*(x))=L P (1—2|x—x|/L). (35 U12(O)Ef J J’ f dx;dx,dx;dx;
UE oJoJo Jo
The prefactor can be related to the reflection coefficient of XU (X1, %) U 15X x’)(l— 2|X1_X1|)
the wire. To see this we consider the Dyson equation to sec- 122 T T2 L
ond order in the disorder, 2| xy— 4|
y ( - %)
L
G(x,X")=Go(X,x") + Jo dx Go(X. X)V(X)Go(x.X") and (R;)=L/l. Equation(40) predicts the 1/dependence

found in the qualitative discussion leading to Eg&2). It

L Lo , follows that the relative magnitude of the fluctuations is of
+ fo deo dx’ Go(x)V(X)Go(x. X") the orde R)U,(0)/U5(2ke) and even thoughR)<1 for
quasiballistic wires the effect of long-ranged interactions
XV(x")Go(x"Xx"), (36)  U;x0)/Ux(2ke)>1 can give rise to relative fluctuations of

order unity, i.e., fluctuations comparable to the mean value.
and from the Fisher-Lee relation we notice tHat=1—7  As we shall see in the next section, E40) is in excellent
=1—(%ve)?G(L,0)|%. It then follows that to second order agreement with our numerical results.
in the disorder(R)=L(Wy/hve)?=L/I (the last equality

follows from Appendix B so that IV. NUMERICAL RESULTS
o o In this section we apply Eq15) to numerically evaluate
UxX)u* (x))=(R)(1—2|x—x|/L). (37)  the statistical properties of ensembles of different disorder
configurations.
This means that The numerical implementation was tested by first calcu-

lating the Landauer conductan&;, Eq. (17), for various
(R) geometries which can also be solved analytically. We have
/ 7 v — [y A also tested our use of the Anderson model for disordered
(OA(XX") SA(X,X")) 2 O =X x=x) wires. By changing the ratit/L from the localized regime
- [ (I/L<1) to the delocalized regimd/L>1) we have ob-
X=X =x")=f(X"=x,x=X")  tained distributions, mean values, and fluctuations for the
- ., = Landauer conductand®;; which are in agreement with the
—fx=x"x" =)}, (38 analytical results of Abrikoso¥/, We have also compared our
L o o lattice implementation, Eq(15), to analytical resultdsee
wheref(x’ —x',x—x)=(1—2|x’ —x'|/L)cos Kg(Xx—X). Appendix Q for drag between two ballistic wires. By mak-
Out of the 16 terms only 4 terms of the form cos( ing the grid sufficiently fine Eq(15) is capable of reproduc-
—;)cos(y—ﬁ are finite for long wireskeL>1 and we thus @ng the curves in Fig. 7 wh!ch are based on E@B) with the_
get integrals evaluated numerically. Another test is the predicted
peaking ofG,; at the onset of modes in either of the two
wirest* and for systems with resonance transmissjoeaks

<[5G2]J2>uczcz<Rl><R2>J’ U6 y)Up(X,y") ![gti%ﬁ).' we find this to be borne out by our lattice implemen
- - - — For the study of drag between disordered wires we con-
XU(X,Y)U 1o(X",y" ) F (X=X, x" = X") sider quarter-filled bandsef=t) and wires withN=100
Vv v - lattice points so thakgL =(7/3)Xx100. The separation is
(Y=y.y'=y") ked=1 and for simplicity we assume an unscreened Cou-

L ~ lomb interaction
=C? 5 (RY(R)UTA2kr) TU340). (39

e2

{Ulz}nn’:

This corresponds to the estimate in E81c). Finally, the 4mrege(n—n")%a%+d?

mean value is close to the value for ballistic wires and MO"Eor a discussion on how to include an effective screened
malizing by Eq.(27) we get

interaction (e.g., within the random-phase approximajion
see, e.g., Ref. 17 and references therein.
5G.10Y2 12 R MRNUZ(2ke)U2,(0) ]2 For the casd=36L (this corresponds toW=¢/10) the
(L G Zﬂo;uc = [2R)(Rz) 212( FU1A0)] , (40 disorder has as expecfédalmost no effect on the Landauer
21 U 7o 2ke) conductance, i.e{G;;)~2e?/h with vanishing fluctuations.
However, for the transconductance the situation is very dif-
where ferent. Panel(a) of Fig. 5 shows a typical histogram of

(41)
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o

X
)
=,

107 1

10* kpf 10

FIG. 6. Plot of fluctuationg[ 6G,,(1)1?)*? as a function of the
mean free patltkel. In both cases the expected behavior, Eq.
(22), is borne out by the numerical calculations. The solid lines are
Eq. (40) with no free parameters. The expected enhancement, Eq.
(23), for correlated disorder by a factor b compared to uncor-
related disorder is also confirmed by the numerical calculations.

is of the same order as the mean value so that sign reversal
for some disorder realizations is possible. The latter is rep-
resented by the negative tail in the histogram. The sign of the

* %

*

* % X X

[II1

drag is thus arbitrary in the sense that both positive and nega-
tive drag can be observed.
d () For the_d~istributi0n of G,; we find that P (x)
cexf —|(x—x)/x|*] with a=1.4 fits surprisingly well to the
data. However, this observation does not exclude the possi-
bility that other functions may be fitted equally wéflin fact
! ‘ we have performed these fits to histograms Ker ranging
N from 10° to 1 with keL in the range 100—-300 and find
indications thatx~ 1.4—1.5 which by rescaling @,; makes
it possible to let all histograms fall onto the same curve.
. * * # However, the distribution is nonuniversal in the sense that it
| |”|||““ depends on the range of the interactldp,. _
i o For the same system parameters but now with fully cor-
related disorder we get a very different distribution as seen in
-1 01 2 3 4 5 6 7 panel(c) of Fig. 5. In this situation the mean transconduc-
] tance is enhanced compared to the uncorrelated case. This
G (g)/ Go (OO) confirms at least qualitatively the predictions for 2D systems
FIG. 5. Histograms fofS,,(I) normalized by the ballistic result ©f Ref. 18. The mean fluctuations are also enhanceel
Gy(). The histograms are based pri0* disorder configurations "€turn to the enhancement belowiowever, since the mean
and for all three histograms the mean free path=86L. Panel(a  transconductance is enhanced by almost a factor of 2 com-
is for the situation of mutually uncorrelated disorder, paielfor ~ Pared to the ballistic limit this also means that there is no
partly correlated disordeM(,=W,), and panelc) is for mutually ~ disorder configurations giving rise to negative drag. For
fully correlated disorder. partly correlated disorder, paneb), the distribution is
shifted to a higher mean value and the shape is also slightly
Go(1)/G () [Where Gy(=) is the result in the ballistc Sha@nged with an increase in the magnitude of the fluctua-
regime; see Appendix [Jor |=36L in the case of uncorre- tions. .
lated disorder. Depending on the disorder configuration In Fig. 6 we show th'e dependence of the fluctuations on
G,(l) can be either higher or lower than in the ballistic the m(.ean free path which has _the expected ki depen-
regime. The enhancement occurring for certain disorder Corggnce,_see Ec(_22). We also notice _that correlated disorder
figurations can be understood physically as follows. The lacig!Ves rise to slightly larger fluctuations compared to uncor-
of translational invariance allows forward scatterifigins- related dlsordt_ar. In fact they are exactly enhanced by a factor
ferred momentung=0), which normally has little effect, to ©f V2 as predicted; see E(R3).
cause transitions between scattering states with opposite di-
rections, thus contributing to the drag. We emphasize that the V. DISCUSSION AND CONCLUSION
histogram peaks close to the ballistic value and not at zero We have studied drag of Coulomb-coupled disordered
drag; i.e., the mean drag is finite and positive. The variancenesoscopic 1D wires and developed a formalism for inves-

085317-7



MORTENSEN, FLENSBERG, AND JAUHO PHYSICAL REVIEW B5 085317

tigating the statistical properties both analytically and nu-have used that the interchange—x" corresponds to a sign
merically. In this work we have focused on the quasiballisticchange along with a complex conjugation.
regime withL<I. For the ordinary Landauer conductance

Gji this is experimentally a somewhat trivial regime sinceé AppeNDIX B: MEAN FREE PATH IN THE ANDERSON

weak disorder has almost no effect a«f_ﬁ_”)~2e2_/h with MODEL
vanishing fluctuations. However, surprisingly this same re-
gime (which can be achieved experimentallgffers rich For a tight-binding chain wittN sites and no disorder we

physics when measuring transconductance between twhave eigenstateg(n)= N~ Y2%exp(kna). We calculate the
Coulomb-coupled wires. In this work we report results of therate for forward scattering+) and backscattering<) from
statistical properties of the transconductai@g including  Fermi’s golden rule

its distribution function. Depending on the disorder configu-

ration the transconductance can be either positive or negative 1 27 5 L 1=KK' K[k
and even though the mean value is close to the ballistic value =) = 7 2 (V]| “6(e —e )
the fluctuations can be of the same order of magnitude. This k (B1)

is fully explained by analytical calculations including the

weak disorder perturbatively. The effect can be explained byhereV is the disorder potential which is treated as a per-
a combination of disorder induced backscattering in theurbation. For a chain with larghl we take the sum into an
wires and forward scattering between the wires induced byntegral and since 8(e—&')=|hv\| Y (k—k')+ &(k

Coulomb interaction. +k’)] we get
We have also studied the recently proposed sitution
where the electrons in the two wires experience a common 1 a
disorder potential. In this case we also find that even weak = > el@Fkin=may vy (B2)
disorder gives rise to pronounced fluctuations and also a con- 7+ (K) N72Jv| m

siderable enhancement of the mean transconductance.

The reported distribution functions have been successfully In the Anderson mod& the different sites are uncorre-
fitted by simple analytical expressions. Although there are ndated and p(V,)=0(W/2—V,)/W which means that
analytical predictions for the exact functional form, these(V,Vy)=(V2)8,n=W?/126,,. The corresponding mean
initial results suggest that a more detailed analytical investifree path is given by(k)=v /(7. (k)) (forward scattering
gation could be rewarding. and backscattering give rise to the same resaid for e

Finally, let us note that while this work has focused on=2t(1—coska) we get the result in Eq(19) at the Fermi
L<I, for multimode wires also the diffusive and localized |evel. The result agrees with Ref. 25 except for a constant
regime$>?°with L>| seem to be a promising direction for shift of the energy by 2
future work*

APPENDIX C: BALLISTIC REGIME
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Hagemanns Mindefond. A, (x,x")=k(s)cogk(e)(x' —x)]/e. (C1)
APPENDIX A: FORMULATION IN TERMS OF SPECTRAL We consider the low-temperature linkiT <& where we can
FUNCTIONS evaluate the spectral functions in E) at the Fermi level

We start from Eq(2) of Ref. 14. With a knowledge of the S0 that

exact eigenstates of the isolated wires the expression points "

out a direct way of calculating the transconductance and it is b M ho ' on

possible to simplify this expression for ballistic wires where Ao x)= ;S'riZkF(X XDl (€2
the eigenstates are known analytically; see Appendix C.

However, in most cases the eigenstates are not known andThe w integration in Eq(2) can now be performed and using
is useful to make a numerically more appropriate formula-Eq. (14) we get

tion in terms of the retarded lattice Green function. Using

that the current matrix element can be written as . _ez 1 /kT\2/ 2m)\?
. ho _ - 2h 12\ e) | 42
(@ I(x)| By = 5 lim ax[ (a|x)(X| B) = (a|x)(x| B)],
2mi L (L (L (L
(A1) XJ f f J dxydx;dxidx;sin 2k (X1 —x7) ]
0oJoJo Jo

and by introducing the factor< [ de §(e —¢,) into Eq.(2) L o S
of Ref. 14 we get the result in E¢B). In the second term we XU 1(X1 ;%) U 12(X] ;X5) SIN 2K (X, —x3) ], (C3)
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krL

FIG. 7. Plot ofG,, for two ballistic wires, Eq(C3), as a func-
tion of the lengthkcL for different values of the separatidgd.
The dashed curves show the asymptotic result,(Ed).

In general the integrals have to be calculated numericall

and only in the limitkeL>1 (the limit also studied in Ref.)5
we have the asymptotic result

e? 1[kT U(keh 2
Gy~ =| —— ————keL Ko(2ked) |

E€F

(C9

PHYSICAL REVIEW 85 085317

where 72 is the third Pauli matrix and

JTe'¢

~ JRei(@40) ©2)

S

is the usual unitary scattering matrix in the presence of time-
reversal symmetry $§=i and S=S'). In the second
equality the scattering probabilitie=|t|? and R=1—T7
=|r|?=|r’|? have been introduced. Equatit#) in Ref. 14
can now be written as

ﬁUF
Alw,x,x")= wzﬁwTTr{J[p(x);p(x’)]}, (D3)

where[ A;B]=AB—BA is a commutator withA andB being
Ynatrices. Next we employ a unitary transformation

_(u —v)
U= vt Ut ) (D4)

whereK, is a modified Bessel function of the second kind of with |u|?+ |v|?=1, which satisfieg/Ji/ "= \7+° by choos-

order zerc®® Here, we have assumed unscreened Couloming

interaction [see Eq. (41)] and introduced U(r)

u>=3(1+T), [v[?*=3(1-V7), and ovu*
=%\/ﬁe'(¢‘9) (in a concrete calculation it can be useful to

=e?/(4mege,r). Figure 7 shows a numerical evaluation of use the freedom to choose the phases-as|e'(¢~ 92 and

Eqg. (C3) along with the asymptotic result, E¢C4).

APPENDIX D: FORMULATION IN TERMS OF
SCATTERING STATES

We start from Eq(4) in Ref. 14 using scattering states at

the Fermi level as our basisy, (x),#_(x)} where+ (—) is
for a state incident from the leftight) lead. All matrix ele-

u=|ule '(¢=92) It is then easy to obtain the very compact
result

A(w,x,x'>=4w2hw?ﬁilm{5+,<x>7>,+<x')},
(D5)

ments| .z .and pap Can then be considered as .elements ofyhere in the new basis(x) =1 p(x)U. With the choice of
2X 2 matrices!] andp. Due to current conservation, we are relative phase mentioned above we have in particular

free to evaluate the current matrix element in the |dads-
side the region with elastic scatteringvhich gives |
=(vg/L)J with

T —JRTE479)

JRTe (=9 -7 '
(D1)

J=(r*-s'Pg)2=

~ ai(é—0)
p+—(X)= 2

[VRIp-—(X)—ps+(X)]

+(1+VT)py - (X)=(1=T)p* _(x)].
(D6)
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