90 research outputs found

    Velocity of sound in relativistic heavy-ion collisions

    Get PDF
    We have studied the rapidity distribution of secondary hadrons produced in nucleus-nucleus collisions at ultra-relativistic energies within the ambit of the Landau's hydrodynamical model. A reasonable description of the data can also be obtained by using the Bjorken's hydrodynamical model if the boost invariance is restricted to a finite rapidity range. The sensitivity of the hadronic spectra on the equation of state vis- a -vis the velocity of sound has been discussed. The correlation between the velocity of sound and the freeze-out temperature has been indicated. The effects of the non-zero widths of various mesonic and baryonic degrees of freedom up to the mass value ~ 2.5 GeV is seen to be small.Comment: 9 pages and 11 figures. Major changes. To appear in Physical Review

    Studying freeze-out and hadronization in the Landau hydrodynamical model

    Full text link
    We study the rapidity spectra in ultra-relativistic heavy ion collisions in the framework of the Landau hydrodynamical model. We find that thermal smearing effects improve the agreement with experimental results on pion rapidity spectra. We describe a simple model of the hadronization and discuss its consequences regarding the pion multiplicity and the increasing entropy condition.Comment: 7 pages, 3 figure

    Momentum Kick Model Description of the Ridge in (Delta-phi)-(Delta eta) Correlation in pp Collisions at 7 TeV

    Full text link
    The near-side ridge structure in the (Delta phi)-(Delta eta) correlation observed by the CMS Collaboration for pp collisions at 7 TeV at LHC can be explained by the momentum kick model in which the ridge particles are medium partons that suffer a collision with the jet and acquire a momentum kick along the jet direction. Similar to the early medium parton momentum distribution obtained in previous analysis for nucleus-nucleus collisions at 0.2 TeV, the early medium parton momentum distribution in pp collisions at 7 TeV exhibits a rapidity plateau as arising from particle production in a flux tube.Comment: Talk presented at Workshop on High-pT Probes of High-Density QCD at the LHC, Palaiseau, May 30-June2, 201

    Exact (1+1)-dimensional flows of a perfect fluid

    Full text link
    We present a general solution of relativistic (1+1)-dimensional hydrodynamics for a perfect fluid flowing along the longitudinal direction as a function of time, uniformly in transverse space. The Khalatnikov potential is expressed as a linear combination of two generating functions with polynomial coefficients of 2 variables. The polynomials, whose algebraic equations are solved, define an infinite-dimensional basis of solutions. The kinematics of the (1+1)-dimensional flow are reconstructed from the potential.Comment: 14 pages, 1 figur

    A Co-moving Coordinate System for Relativistic Hydrodynamics

    Get PDF
    The equations of relativistic hydrodynamics are transformed so that steps forward in time preserves local simultaneity. In these variables, the space-time coordinates of neighboring points on the mesh are simultaneous according to co-moving observers. Aside from the time step varying as a function of the location on the mesh, the local velocity gradient and the local density then evolve according to non-relativistic equations of motion. Analytic solutions are found for two one-dimensional cases with constant speed of sound. One solution has a Gaussian density profile when mapped into the new coordinates. That solution is analyzed for the effects of longitudinal acceleration in relativistic heavy ion collisions at RHIC, especially in regards to two-particle correlation measurements of the longitudinal size

    Imaging the Space-Time Evolution of High Energy Nucleus-Nucleus Collisions with Bremsstrahlung

    Get PDF
    The bremsstrahlung produced when heavy nuclei collide is estimated for central collisions at the Relativistic Heavy Ion Collider. Bremsstrahlung photons with energies below 100 to 200 MeV are sufficient to discern the gross features of the space-time evolution of electric charge, if they can be separated from other sources of photons experimentally. This is illustrated explicitly by considering two very different models, one Bjorken-like, the other Landau-like, both of which are constructed to give the same final charge rapidity distribution.Comment: 9 pages revtex style, 9 embedded PS figure

    Detailed description of accelerating, simple solutions of relativistic perfect fluid hydrodynamics

    Get PDF
    In this paper we describe in full details a new family of recently found exact solutions of relativistic, perfect fluid dynamics. With an ansatz, which generalizes the well-known Hwa-Bjorken solution, we obtain a wide class of new exact, explicit and simple solutions, which have a remarkable advantage as compared to presently known exact and explicit solutions: they do not lack acceleration. They can be utilized for the description of the evolution of the matter created in high energy heavy ion collisions. Because these solutions are accelerating, they provide a more realistic picture than the well-known Hwa-Bjorken solution, and give more insight into the dynamics of the matter. We exploit this by giving an advanced simple estimation of the initial energy density of the produced matter in high energy collisions, which takes acceleration effects (i.e. the work done by the pressure and the modified change of the volume elements) into account. We also give an advanced estimation of the life-time of the reaction. Our new solutions can also be used to test numerical hydrodynamical codes reliably. In the end, we also give an exact, 1+1 dimensional, relativistic hydrodynamical solution, where the initial pressure and velocity profile is arbitrary, and we show that this general solution is stable for perturbations.Comment: 34 pages, 8 figures, detailed write-up of http://arxiv.org/abs/nucl-th/0605070

    Coulomb distortion of pi+/pi- as a tool to determine the fireball radius in central high energy heavy ion collisions

    Get PDF
    We compute the Coulomb distortion produced by an expanding and highly charged fireball on the spectra of low transverse momenta and mid rapidity pions produced in central high energy heavy ion collisions. We compare to data on Au+Au at 11.6A GeV from E866 at the BNL AGS and of Pb+Pb at 158A GeV from NA44 at the CERN SPS. We match the fireball expanison velocity with the average transverse momentum of protons and find a best fit to the charged pion ratio when the fireball radius is about 10 fm at freeze-out. This value is common to both AGS and SPS data.Comment: 4 pages includes 2 figures, uses espcrc1 and epsfig. To appear in proceedings of QM99, Torino Italy, May 199

    Direct photons at low transverse momentum -- a QGP signal in pp collisions at LHC

    Full text link
    We investigate photon production in a scenario of quark-gluon plasma formation in proton-proton scattering at 7 TeV. It is shown that thermal photon yields increase quadratically with the charged particle multiplicity. This gives an enhanced weight to high multiplicity events, and leads to an important photon production even in minimum bias events, where the thermal photons largely dominate over the prompt ones at transverse momentum values smaller than 10 GeV/c.Comment: 4 pages, 4 figure

    Hotter, Denser, Faster, Smaller...and Nearly-Perfect: What's the matter at RHIC?

    Get PDF
    The experimental and theoretical status of the ``near perfect fluid'' at RHIC is discussed. While the hydrodynamic paradigm for understanding collisions at RHIC is well-established, there remain many important open questions to address in order to understand its relevance and scope. It is also a crucial issue to understand how the early equilibration is achieved, requiring insight into the active degrees of freedom at early times.Comment: 10 Pages, 13 Figures, submitted to the proceedings of the Second Meeting of the APS Topical Group on Hadronic Physics, Nashville, TN, October 22-24, 200
    • …
    corecore