89 research outputs found

    An interior point method for isogeometric contact

    Get PDF
    Cataloged from PDF version of article.. The interior point method is applied to frictionless contact mechanics problems and is shown to be a viable alternative to the augmented Lagrangian approach. The method is derived from a mixed formulation which induces a contact discretization scheme in the spirit of the mortar method and naturally delivers slack variables that help constrain the solution to the feasible region. The derivation of the algorithm as well as its robustness benefits from the contact interface description that is induced by NURBS-based isogeometric volume discretizations. Various interior point algorithms are discussed, including a primal dual approach that satisfies the unilateral contact constraints exactly, in addition to two primal approaches that retain an arbitrary barrier parameter. The developed algorithms can easily be pursued starting from an augmented Lagrangian implementation. Numerical investigations on benchmark problems demonstrate the efficiency and the robustness of the framework, but also highlight current limitations that suggest paths for future research. Overall, the results indicate that the interior point method can challenge the augmented Lagrangian method in contact mechanics, even displaying potential for higher efficiency and robustness. (C) 2014 Elsevier B.V. All rights reserved

    Genetic Algorithms with Local Improvement for Composite Laminate Design

    Get PDF
    This paper describes the application of a genetic algorithm to the stacking sequence optimization of a composite laminate plate for buckling load maximization. Two approaches for reducing the number of analyses are required by the genetic algorithm are described. First, a binary tree is used to store designs, affording an efficient way to retrieve them and thereby avoid repeated analyses of designs that appeared in previous generations. Second, a local improvements scheme based on approximations in terms of lamination parameters is introduced. Two lamination parameters are sufficient to define the flexural stiffness and hence the buckling load of a balanced, symmetrically laminated plate. Results were obtained for rectangular graphite-epoxy plates under biaxial in-plane loading. The proposed improvements are shown to reduce significantly the number of analyses required for the genetic optimization

    Low-energy structure of the even-A 96−104 Ru isotopes via g-factor measurements

    Get PDF
    The transient-field-perturbed angular correlation technique was used with Coulomb excitation in inverse kinematics to perform a systematic measurement of the g factors of the first excited 21+ states in the stable even-A isotopes Ru96-104. The measurements have been made relative to one another under matched kinematic conditions and include a measurement of g(21+)=+0.47(3) in Ru96

    Bi-level optimization of blended composite panels

    Get PDF
    Two approaches are examined for finding the best stacking sequence of laminated composite wing structures with blending and manufacturing constraints: smeared stiffness-based method and lamination parameter-based method. In the first method, the material volume is the objective function at the global level and the stack shuffling to satisfy blending and manufacturing constraints is performed at the local level. The other method introduced in this paper is to use lamination parameters and numbers of plies of the pre-defined angles (0, 90, 45 and -45 degrees) as design variables with buckling, strength and ply percentage constraints while minimizing the material volume in the top level optimization run. Given lamination parameters from the top level optimization as targets for the local level, optimal stacking sequence is determined to satisfy the global blending requirements. On a benchmark problem of an 18-panel wing box, the results from these two approaches are compared to published results to demonstrate their potential

    \u3cem\u3eg\u3c/em\u3e Factor of the 2\u3csup\u3e+\u3c/sup\u3e\u3csub\u3e1\u3c/sub\u3e State of \u3csup\u3e170\u3c/sup\u3eHf

    Get PDF
    The g factor of the 2+1 state of 170Hf was measured by perturbed γ-γ angular correlation in a static external magnetic field. The result, g(2+1) = 0.28(5), extends the systematics of g factors of even-even Hf isotopes to N = 98 and enables a better test of theoretical models. The g(2+1) experimental values of these isotopes exhibit a remarkable constancy as a function of neutron number. This phenomenon, which was also observed for other isotopic chains in the Gd–W range, is explained in terms of a recently proposed empirical model

    Enhanced Mixing of Intrinsic States in Deformed Hf Nuclei

    Get PDF
    Excited low-spin, nonyrast states in 170,172,174Hf were populated in β + /∈decay and studied through off-beam γ-ray spectroscopy. New coincidence data allowed for a substantial revision of the level schemes of Hf170,172 and a confirmation of the level scheme of 174Hf. The Hf isotopes represent a unique situation in which a crossing of collective intrinsic excitations occurs, enhancing significantly the effects of mixing. Using branching ratios from excited 2+ states, this mixing is followed and studied. The resulting mixing matrix elements are found to be ∼30 keV—an order of magnitude larger than estimated previously for nearby nuclei. In the case of 170Hf, the 2+β and 2+γlevel are shown to be completely mixed

    \u3cem\u3eg\u3c/em\u3e Factor of the 2\u3csup\u3e+\u3c/sup\u3e\u3csub\u3e1\u3c/sub\u3e State of \u3csup\u3e172\u3c/sup\u3eHf

    Get PDF
    The g factor of the 2+1 state of 172Hf was measured using the perturbed angular correlation technique in a static external magnetic field. The result, g(2+1) = 0.25(5), is discussed in relation to the systematics of the previously reported g factors in the Hf isotopes and compared with the predictions of several models. An interesting outcome of the analysis presented in this paper is the agreement between the calculated g factors within the interacting boson approximation (IBA) and the results of a large-scale shell model calculation. This agreement supports the emphasis in the IBA on the valence space. The undershooting of the empirical g factors near midshell in both models suggests that they underestimate the role of the saturation of collectivity, which is explicitly incorporated into a phenomenological model that agrees better with the data

    Free vibration analysis and design optimization of SMA/Graphite/Epoxy composite shells in thermal environments

    Get PDF
    Composite shells, which are being widely used in engineering applications, are often under thermal loads. Thermal loads usually bring thermal stresses in the structure which can significantly affect its static and dynamic behaviors. One of the possible solutions for this matter is embedding Shape Memory Alloy (SMA) wires into the structure. In the present study, thermal buckling and free vibration of laminated composite cylindrical shells reinforced by SMA wires are analyzed. Brinson model is implemented to predict the thermo-mechanical behavior of SMA wires. The natural frequencies and buckling temperatures of the structure are obtained by employing Generalized Differential Quadrature (GDQ) method. GDQ is a powerful numerical approach which can solve partial differential equations. A comparative study is carried out to show the accuracy and efficiency of the applied numerical method for both free vibration and buckling analysis of composite shells in thermal environment. A parametric study is also provided to indicate the effects of like SMA volume fraction, dependency of material properties on temperature, lay-up orientation, and pre-strain of SMA wires on the natural frequency and buckling of Shape Memory Alloy Hybrid Composite (SMAHC) cylindrical shells. Results represent the fact that SMAs can play a significant role in thermal vibration of composite shells. The second goal of present work is optimization of SMAHC cylindrical shells in order to maximize the fundamental frequency parameter at a certain temperature. To this end, an eight-layer composite shell with four SMA-reinforced layers is considered for optimization. The primary optimization variables are the values of SMA angles in the four layers. Since the optimization process is complicated and time consuming, Genetic Algorithm (GA) is performed to obtain the orientations of SMA layers to maximize the first natural frequency of structure. The optimization results show that using an optimum stacking sequence for SMAHC shells can increase the fundamental frequency of the structure by a considerable amount

    Pinpointing beta adrenergic receptor in ageing pathophysiology: victim or executioner? Evidence from crime scenes

    Get PDF
    corecore