2,390 research outputs found
Rigid Rotor as a Toy Model for Hodge Theory
We apply the superfield approach to the toy model of a rigid rotor and show
the existence of the nilpotent and absolutely anticommuting
Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations, under
which, the kinetic term and action remain invariant. Furthermore, we also
derive the off-shell nilpotent and absolutely anticommuting (anti-) co-BRST
symmetry transformations, under which, the gauge-fixing term and Lagrangian
remain invariant. The anticommutator of the above nilpotent symmetry
transformations leads to the derivation of a bosonic symmetry transformation,
under which, the ghost terms and action remain invariant. Together, the above
transformations (and their corresponding generators) respect an algebra that
turns out to be a physical realization of the algebra obeyed by the de Rham
cohomological operators of differential geometry. Thus, our present model is a
toy model for the Hodge theory.Comment: LaTeX file, 22 page
Abelian 2-form gauge theory: superfield formalism
We derive the off-shell nilpotent Becchi-Rouet-Stora-Tyutin (BRST) and
anti-BRST symmetry transformations for {\it all} the fields of a free Abelian
2-form gauge theory by exploiting the geometrical superfield approach to BRST
formalism. The above four (3 + 1)-dimensional (4D) theory is considered on a
(4, 2)-dimensional supermanifold parameterized by the four even spacetime
variables x^\mu (with \mu = 0, 1, 2, 3) and a pair of odd Grassmannian
variables \theta and \bar\theta (with \theta^2 = \bar\theta^2 = 0, \theta
\bar\theta + \bar\theta \theta = 0). One of the salient features of our present
investigation is that the above nilpotent (anti-)BRST symmetry transformations
turn out to be absolutely anticommuting due to the presence of a Curci-Ferrari
(CF) type of restriction. The latter condition emerges due to the application
of our present superfield formalism. The actual CF condition, as is well-known,
is the hallmark of a 4D non-Abelian 1-form gauge theory. We demonstrate that
our present 4D Abelian 2-form gauge theory imbibes some of the key signatures
of the 4D non-Abelian 1-form gauge theory. We briefly comment on the
generalization of our supperfield approach to the case of Abelian 3-form gauge
theory in four (3 + 1)-dimensions of spacetime.Comment: LaTeX file, 23 pages, journal versio
Absolutely anticommuting (anti-)BRST symmetry transformations for topologically massive Abelian gauge theory
We demonstrate the existence of the nilpotent and absolutely anticommuting
Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations for the
four (3 + 1)-dimensional (4D) topologically massive Abelian U(1) gauge theory
that is described by the coupled Lagrangian densities (which incorporate the
celebrated (B \wedge F) term). The absolute anticommutativity of the (anti-)
BRST symmetry transformations is ensured by the existence of a Curci-Ferrari
type restriction that emerges from the superfield formalism as well as from the
equations of motion that are derived from the above coupled Lagrangian
densities. We show the invariance of the action from the point of view of the
symmetry considerations as well as superfield formulation. We discuss,
furthermore, the topological term within the framework of superfield formalism
and provide the geometrical meaning of its invariance under the (anti-) BRST
symmetry transformations.Comment: LaTeX file, 22 pages, journal versio
Novel symmetries in N = 2 supersymmetric quantum mechanical models
We demonstrate the existence of a novel set of discrete symmetries in the
context of N = 2 supersymmetric (SUSY) quantum mechanical model with a
potential function f(x) that is a generalization of the potential of the 1D
SUSY harmonic oscillator. We perform the same exercise for the motion of a
charged particle in the X-Y plane under the influence of a magnetic field in
the Z-direction. We derive the underlying algebra of the existing continuous
symmetry transformations (and corresponding conserved charges) and establish
its relevance to the algebraic structures of the de Rham cohomological
operators of differential geometry. We show that the discrete symmetry
transformations of our present general theories correspond to the Hodge duality
operation. Ultimately, we conjecture that any arbitrary N = 2 SUSY quantum
mechanical system can be shown to be a tractable model for the Hodge theory.Comment: LaTeX file, 23 pages, Title and Abstract changed, Text modified,
version to appear in Annals of Physic
The vector-valued big q-Jacobi transform
Big -Jacobi functions are eigenfunctions of a second order -difference
operator . We study as an unbounded self-adjoint operator on an
-space of functions on with a discrete measure. We describe
explicitly the spectral decomposition of using an integral transform
with two different big -Jacobi functions as a kernel, and we
construct the inverse of .Comment: 35 pages, corrected an error and typo
Massive gravity as a quantum gauge theory
We present a new point of view on the quantization of the massive
gravitational field, namely we use exclusively the quantum framework of the
second quantization. The Hilbert space of the many-gravitons system is a Fock
space where the one-particle Hilbert
space carries the direct sum of two unitary irreducible
representations of the Poincar\'e group corresponding to two particles of mass
and spins 2 and 0, respectively. This Hilbert space is canonically
isomorphic to a space of the type where is a gauge charge
defined in an extension of the Hilbert space
generated by the gravitational field and some ghosts fields
(which are vector Fermi fields) and (which
are vector field Bose fields.)
Then we study the self interaction of massive gravity in the causal
framework. We obtain a solution which goes smoothly to the zero-mass solution
of linear quantum gravity up to a term depending on the bosonic ghost field.
This solution depends on two real constants as it should be; these constants
are related to the gravitational constant and the cosmological constant. In the
second order of the perturbation theory we do not need a Higgs field, in sharp
contrast to Yang-Mills theory.Comment: 35 pages, no figur
BRST analysis of topologically massive gauge theory: novel observations
A dynamical non-Abelian 2-form gauge theory (with B \wedge F term) is endowed
with the "scalar" and "vector" gauge symmetry transformations. In our present
endeavor, we exploit the latter gauge symmetry transformations and perform the
Becchi-Rouet-Stora-Tyutin (BRST) analysis of the four (3 + 1)-dimensional (4D)
topologically massive non-Abelian 2-form gauge theory. We demonstrate the
existence of some novel features that have, hitherto, not been observed in the
context of BRST approach to 4D (non-)Abelian 1-form as well as Abelian 2-form
and 3-form gauge theories. We comment on the differences between the novel
features that emerge in the BRST analysis of the "scalar" and "vector" gauge
symmetries of the theory.Comment: LaTeX file, 14 pages, an appendix added, references expanded, version
to appear in EPJ
Surfactant effect in heteroepitaxial growth. The Pb - Co/Cu(111) case
A MonteCarlo simulations study has been performed in order to study the
effect of Pb as surfactant on the initial growth stage of Co/Cu(111). The main
characteristics of Co growing over Cu(111) face, i.e. the decorated double
layer steps, the multiple layer islands and the pools of vacancies, disappear
with the pre-evaporation of a Pb monolayer. Through MC simulations, a full
picture of these complex processes is obtained. Co quickly diffuses through the
Pb monolayer exchanging place with Cu atoms at the substrate. The exchange
process diffusion inhibits the formation of pure Co islands, reducing the
surface stress and then the formation of multilayer islands and the pools of
vacancies. On the other hand, the random exchange also suppress the nucleation
preferential sites generated by Co atoms at Cu steps, responsible of the step
decoration.Comment: 4 pages, latex, 2 figures embedded in the tex
Theoretical overview on high-energy emission in microquasars
Microquasar (MQ) jets are sites of particle acceleration and synchrotron
emission. Such synchrotron radiation has been detected coming from jet regions
of different spatial scales, which for the instruments at work nowadays appear
as compact radio cores, slightly resolved radio jets, or (very) extended
structures. Because of the presence of relativistic particles and dense photon,
magnetic and matter fields, these outflows are also the best candidates to
generate the very high-energy (VHE) gamma-rays detected coming from two of
these objects, LS 5039 and LS I +61 303, and may be contributing significantly
to the X-rays emitted from the MQ core. In addition, beside electromagnetic
radiation, jets at different scales are producing some amount of leptonic and
hadronic cosmic rays (CR), and evidences of neutrino production in these
objects may be eventually found. In this work, we review on the different
physical processes that may be at work in or related to MQ jets. The jet
regions capable to produce significant amounts of emission at different
wavelengths have been reduced to the jet base, the jet at scales of the order
of the size of the system orbital semi-major axis, the jet middle scales (the
resolved radio jets), and the jet termination point. The surroundings of the
jet could be sites of multiwavelegnth emission as well, deserving also an
insight. We focus on those scenarios, either hadronic or leptonic, in which it
seems more plausible to generate both photons from radio to VHE and high-energy
neutrinos. We briefly comment as well on the relevance of MQ as possible
contributors to the galactic CR in the GeV-PeV range.Comment: Astrophysics & Space Science, in press (invited talk in the
conference: The multimessenger approach to the high-energy gamma-ray
sources", Barcelona/Catalonia, in July 4-7); 10 pages, 6 figures, 2 tables
(one reference corrected
Close-Packing of Clusters: Application to Al_100
The lowest energy configurations of close-packed clusters up to N=110 atoms
with stacking faults are studied using the Monte Carlo method with Metropolis
algorithm. Two types of contact interactions, a pair-potential and a many-atom
interaction, are used. Enhanced stability is shown for N=12, 26, 38, 50, 59,
61, 68, 75, 79, 86, 100 and 102, of which only the sizes 38, 75, 79, 86, and
102 are pure FCC clusters, the others having stacking faults. A connection
between the model potential and density functional calculations is studied in
the case of Al_100. The density functional calculations are consistent with the
experimental fact that there exist epitaxially grown FCC clusters starting from
relatively small cluster sizes. Calculations also show that several other
close-packed motifs existwith comparable total energies.Comment: 9 pages, 7 figure
- …
