2,390 research outputs found

    Rigid Rotor as a Toy Model for Hodge Theory

    Full text link
    We apply the superfield approach to the toy model of a rigid rotor and show the existence of the nilpotent and absolutely anticommuting Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations, under which, the kinetic term and action remain invariant. Furthermore, we also derive the off-shell nilpotent and absolutely anticommuting (anti-) co-BRST symmetry transformations, under which, the gauge-fixing term and Lagrangian remain invariant. The anticommutator of the above nilpotent symmetry transformations leads to the derivation of a bosonic symmetry transformation, under which, the ghost terms and action remain invariant. Together, the above transformations (and their corresponding generators) respect an algebra that turns out to be a physical realization of the algebra obeyed by the de Rham cohomological operators of differential geometry. Thus, our present model is a toy model for the Hodge theory.Comment: LaTeX file, 22 page

    Abelian 2-form gauge theory: superfield formalism

    Full text link
    We derive the off-shell nilpotent Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations for {\it all} the fields of a free Abelian 2-form gauge theory by exploiting the geometrical superfield approach to BRST formalism. The above four (3 + 1)-dimensional (4D) theory is considered on a (4, 2)-dimensional supermanifold parameterized by the four even spacetime variables x^\mu (with \mu = 0, 1, 2, 3) and a pair of odd Grassmannian variables \theta and \bar\theta (with \theta^2 = \bar\theta^2 = 0, \theta \bar\theta + \bar\theta \theta = 0). One of the salient features of our present investigation is that the above nilpotent (anti-)BRST symmetry transformations turn out to be absolutely anticommuting due to the presence of a Curci-Ferrari (CF) type of restriction. The latter condition emerges due to the application of our present superfield formalism. The actual CF condition, as is well-known, is the hallmark of a 4D non-Abelian 1-form gauge theory. We demonstrate that our present 4D Abelian 2-form gauge theory imbibes some of the key signatures of the 4D non-Abelian 1-form gauge theory. We briefly comment on the generalization of our supperfield approach to the case of Abelian 3-form gauge theory in four (3 + 1)-dimensions of spacetime.Comment: LaTeX file, 23 pages, journal versio

    Absolutely anticommuting (anti-)BRST symmetry transformations for topologically massive Abelian gauge theory

    Full text link
    We demonstrate the existence of the nilpotent and absolutely anticommuting Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations for the four (3 + 1)-dimensional (4D) topologically massive Abelian U(1) gauge theory that is described by the coupled Lagrangian densities (which incorporate the celebrated (B \wedge F) term). The absolute anticommutativity of the (anti-) BRST symmetry transformations is ensured by the existence of a Curci-Ferrari type restriction that emerges from the superfield formalism as well as from the equations of motion that are derived from the above coupled Lagrangian densities. We show the invariance of the action from the point of view of the symmetry considerations as well as superfield formulation. We discuss, furthermore, the topological term within the framework of superfield formalism and provide the geometrical meaning of its invariance under the (anti-) BRST symmetry transformations.Comment: LaTeX file, 22 pages, journal versio

    Novel symmetries in N = 2 supersymmetric quantum mechanical models

    Full text link
    We demonstrate the existence of a novel set of discrete symmetries in the context of N = 2 supersymmetric (SUSY) quantum mechanical model with a potential function f(x) that is a generalization of the potential of the 1D SUSY harmonic oscillator. We perform the same exercise for the motion of a charged particle in the X-Y plane under the influence of a magnetic field in the Z-direction. We derive the underlying algebra of the existing continuous symmetry transformations (and corresponding conserved charges) and establish its relevance to the algebraic structures of the de Rham cohomological operators of differential geometry. We show that the discrete symmetry transformations of our present general theories correspond to the Hodge duality operation. Ultimately, we conjecture that any arbitrary N = 2 SUSY quantum mechanical system can be shown to be a tractable model for the Hodge theory.Comment: LaTeX file, 23 pages, Title and Abstract changed, Text modified, version to appear in Annals of Physic

    The vector-valued big q-Jacobi transform

    Get PDF
    Big qq-Jacobi functions are eigenfunctions of a second order qq-difference operator LL. We study LL as an unbounded self-adjoint operator on an L2L^2-space of functions on R\mathbb R with a discrete measure. We describe explicitly the spectral decomposition of LL using an integral transform F\mathcal F with two different big qq-Jacobi functions as a kernel, and we construct the inverse of F\mathcal F.Comment: 35 pages, corrected an error and typo

    Massive gravity as a quantum gauge theory

    Full text link
    We present a new point of view on the quantization of the massive gravitational field, namely we use exclusively the quantum framework of the second quantization. The Hilbert space of the many-gravitons system is a Fock space F+(Hgraviton){\cal F}^{+}({\sf H}_{\rm graviton}) where the one-particle Hilbert space Hgraviton{\sf H}_{graviton} carries the direct sum of two unitary irreducible representations of the Poincar\'e group corresponding to two particles of mass m>0m > 0 and spins 2 and 0, respectively. This Hilbert space is canonically isomorphic to a space of the type Ker(Q)/Im(Q)Ker(Q)/Im(Q) where QQ is a gauge charge defined in an extension of the Hilbert space Hgraviton{\cal H}_{\rm graviton} generated by the gravitational field hμνh_{\mu\nu} and some ghosts fields uμ,u~μu_{\mu}, \tilde{u}_{\mu} (which are vector Fermi fields) and vμv_{\mu} (which are vector field Bose fields.) Then we study the self interaction of massive gravity in the causal framework. We obtain a solution which goes smoothly to the zero-mass solution of linear quantum gravity up to a term depending on the bosonic ghost field. This solution depends on two real constants as it should be; these constants are related to the gravitational constant and the cosmological constant. In the second order of the perturbation theory we do not need a Higgs field, in sharp contrast to Yang-Mills theory.Comment: 35 pages, no figur

    BRST analysis of topologically massive gauge theory: novel observations

    Full text link
    A dynamical non-Abelian 2-form gauge theory (with B \wedge F term) is endowed with the "scalar" and "vector" gauge symmetry transformations. In our present endeavor, we exploit the latter gauge symmetry transformations and perform the Becchi-Rouet-Stora-Tyutin (BRST) analysis of the four (3 + 1)-dimensional (4D) topologically massive non-Abelian 2-form gauge theory. We demonstrate the existence of some novel features that have, hitherto, not been observed in the context of BRST approach to 4D (non-)Abelian 1-form as well as Abelian 2-form and 3-form gauge theories. We comment on the differences between the novel features that emerge in the BRST analysis of the "scalar" and "vector" gauge symmetries of the theory.Comment: LaTeX file, 14 pages, an appendix added, references expanded, version to appear in EPJ

    Surfactant effect in heteroepitaxial growth. The Pb - Co/Cu(111) case

    Full text link
    A MonteCarlo simulations study has been performed in order to study the effect of Pb as surfactant on the initial growth stage of Co/Cu(111). The main characteristics of Co growing over Cu(111) face, i.e. the decorated double layer steps, the multiple layer islands and the pools of vacancies, disappear with the pre-evaporation of a Pb monolayer. Through MC simulations, a full picture of these complex processes is obtained. Co quickly diffuses through the Pb monolayer exchanging place with Cu atoms at the substrate. The exchange process diffusion inhibits the formation of pure Co islands, reducing the surface stress and then the formation of multilayer islands and the pools of vacancies. On the other hand, the random exchange also suppress the nucleation preferential sites generated by Co atoms at Cu steps, responsible of the step decoration.Comment: 4 pages, latex, 2 figures embedded in the tex

    Theoretical overview on high-energy emission in microquasars

    Get PDF
    Microquasar (MQ) jets are sites of particle acceleration and synchrotron emission. Such synchrotron radiation has been detected coming from jet regions of different spatial scales, which for the instruments at work nowadays appear as compact radio cores, slightly resolved radio jets, or (very) extended structures. Because of the presence of relativistic particles and dense photon, magnetic and matter fields, these outflows are also the best candidates to generate the very high-energy (VHE) gamma-rays detected coming from two of these objects, LS 5039 and LS I +61 303, and may be contributing significantly to the X-rays emitted from the MQ core. In addition, beside electromagnetic radiation, jets at different scales are producing some amount of leptonic and hadronic cosmic rays (CR), and evidences of neutrino production in these objects may be eventually found. In this work, we review on the different physical processes that may be at work in or related to MQ jets. The jet regions capable to produce significant amounts of emission at different wavelengths have been reduced to the jet base, the jet at scales of the order of the size of the system orbital semi-major axis, the jet middle scales (the resolved radio jets), and the jet termination point. The surroundings of the jet could be sites of multiwavelegnth emission as well, deserving also an insight. We focus on those scenarios, either hadronic or leptonic, in which it seems more plausible to generate both photons from radio to VHE and high-energy neutrinos. We briefly comment as well on the relevance of MQ as possible contributors to the galactic CR in the GeV-PeV range.Comment: Astrophysics & Space Science, in press (invited talk in the conference: The multimessenger approach to the high-energy gamma-ray sources", Barcelona/Catalonia, in July 4-7); 10 pages, 6 figures, 2 tables (one reference corrected

    Close-Packing of Clusters: Application to Al_100

    Get PDF
    The lowest energy configurations of close-packed clusters up to N=110 atoms with stacking faults are studied using the Monte Carlo method with Metropolis algorithm. Two types of contact interactions, a pair-potential and a many-atom interaction, are used. Enhanced stability is shown for N=12, 26, 38, 50, 59, 61, 68, 75, 79, 86, 100 and 102, of which only the sizes 38, 75, 79, 86, and 102 are pure FCC clusters, the others having stacking faults. A connection between the model potential and density functional calculations is studied in the case of Al_100. The density functional calculations are consistent with the experimental fact that there exist epitaxially grown FCC clusters starting from relatively small cluster sizes. Calculations also show that several other close-packed motifs existwith comparable total energies.Comment: 9 pages, 7 figure
    corecore