We apply the superfield approach to the toy model of a rigid rotor and show
the existence of the nilpotent and absolutely anticommuting
Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations, under
which, the kinetic term and action remain invariant. Furthermore, we also
derive the off-shell nilpotent and absolutely anticommuting (anti-) co-BRST
symmetry transformations, under which, the gauge-fixing term and Lagrangian
remain invariant. The anticommutator of the above nilpotent symmetry
transformations leads to the derivation of a bosonic symmetry transformation,
under which, the ghost terms and action remain invariant. Together, the above
transformations (and their corresponding generators) respect an algebra that
turns out to be a physical realization of the algebra obeyed by the de Rham
cohomological operators of differential geometry. Thus, our present model is a
toy model for the Hodge theory.Comment: LaTeX file, 22 page