The lowest energy configurations of close-packed clusters up to N=110 atoms
with stacking faults are studied using the Monte Carlo method with Metropolis
algorithm. Two types of contact interactions, a pair-potential and a many-atom
interaction, are used. Enhanced stability is shown for N=12, 26, 38, 50, 59,
61, 68, 75, 79, 86, 100 and 102, of which only the sizes 38, 75, 79, 86, and
102 are pure FCC clusters, the others having stacking faults. A connection
between the model potential and density functional calculations is studied in
the case of Al_100. The density functional calculations are consistent with the
experimental fact that there exist epitaxially grown FCC clusters starting from
relatively small cluster sizes. Calculations also show that several other
close-packed motifs existwith comparable total energies.Comment: 9 pages, 7 figure