64 research outputs found

    Moving nitrogen to the centre of plant defence against pathogens

    Get PDF
    Background Plants require nitrogen (N) for growth, development and defence against abiotic and biotic stresses. The extensive use of artificial N fertilizers has played an important role in the Green Revolution. N assimilation can involve a reductase series ([Formula: see text] → [Formula: see text] → [Formula: see text]) followed by transamination to form amino acids. Given its widespread use, the agricultural impact of N nutrition on disease development has been extensively examined. Scope When a pathogen first comes into contact with a host, it is usually nutrient starved such that rapid assimilation of host nutrients is essential for successful pathogenesis. Equally, the host may reallocate its nutrients to defence responses or away from the site of attempted infection. Exogenous application of N fertilizer can, therefore, shift the balance in favour of the host or pathogen. In line with this, increasing N has been reported either to increase or to decrease plant resistance to pathogens, which reflects differences in the infection strategies of discrete pathogens. Beyond considering only N content, the use of [Formula: see text] or [Formula: see text] fertilizers affects the outcome of plant–pathogen interactions. [Formula: see text] feeding augments hypersensitive response- (HR) mediated resistance, while ammonium nutrition can compromise defence. Metabolically, [Formula: see text] enhances production of polyamines such as spermine and spermidine, which are established defence signals, with [Formula: see text] nutrition leading to increased γ-aminobutyric acid (GABA) levels which may be a nutrient source for the pathogen. Within the defensive N economy, the roles of nitric oxide must also be considered. This is mostly generated from [Formula: see text] by nitrate reductase and is elicited by both pathogen-associated microbial patterns and gene-for-gene-mediated defences. Nitric oxide (NO) production and associated defences are therefore [Formula: see text] dependent and are compromised by [Formula: see text]. Conclusion This review demonstrates how N content and form plays an essential role in defensive primary and secondary metabolism and NO-mediated events

    Nitric oxide induces the alternative oxidase pathway in Arabidopsis seedlings deprived of inorganic phosphate

    Get PDF
    Phosphate starvation compromises electron fow through the cytochrome pathway of the mitochondrial electron transport chain, and plants commonly respond to phosphate deprivation by increasing fow through the alternative oxidase (AOX). To test whether this response is linked to the increase in nitric oxide (NO) production that also increases under phosphate starvation, Arabidopsis thaliana seedlings were grown for 15 d on media containing either 0 or 1 mM inorganic phosphate. The effects of the phosphate supply on growth, the production of NO, respiration, the AOX level and the production of superoxide were compared for wild-type (WT) seedlings and the nitrate reductase double mutant nia. Phosphate deprivation increased NO production in WT roots, and the AOX level and the capacity of the alternative pathway to consume electrons in WT seedlings; whereas the same treatment failed to stimulate NO production and AOX expression in the nia mutant, and the plants had an altered growth phenotype. The NO donor S-nitrosoglutathione rescued the growth phenotype of the nia mutants under phosphate deprivation to some extent, and it also increased the respiratory capacity of AOX. It is concluded that NO is required for the induction of the AOX pathway when seedlings are grown under phosphate-limiting conditions.This work was supported by research grants (AGL2010-16167; AGL2014-52396-P) from the Spanish Ministry of Economy and Competitiveness (MINECO) to JFM, an FPI fellowship from MINECO (BR), and a Marie Curie Intra-European Fellowship for Career Development within the 7th European Community Framework Programme (KJG and RGR).Peer Reviewe

    Plant hemoglobins: Important players at the crossroads between oxygen and nitric oxide

    Get PDF
    AbstractPlant hemoglobins constitute a diverse group of hemeproteins and evolutionarily belong to three different classes. Class 1 hemoglobins possess an extremely high affinity to oxygen and their main function consists in scavenging of nitric oxide (NO) at very low oxygen levels. Class 2 hemoglobins have a lower oxygen affinity and they facilitate oxygen supply to developing tissues. Symbiotic hemoglobins in nodules have mostly evolved from class 2 hemoglobins. Class 3 hemoglobins are truncated and represent a clade with a very low similarity to class 1 and 2 hemoglobins. They may regulate oxygen delivery at high O2 concentrations. Depending on their physical properties, hemoglobins belong either to hexacoordinate non-symbiotic or pentacoordinate symbiotic groups. Plant hemoglobins are plausible targets for improving resistance to multiple stresses

    Gaining Acceptance of Novel Plant Breeding Technologies

    Get PDF
    Ensuring the sustainability of agriculture under climate change has led to a surge in alternative strategies for crop improvement. Advances in integrated crop breeding, social acceptance, and farm-level adoption are crucial to address future challenges to food security. Societal acceptance can be slow when consumers do not see the need for innovation or immediate benefits. We consider how best to address the issue of social licence and harmonised governance for novel gene technologies in plant breeding. In addition, we highlight optimised breeding strategies that will enable long-term genetic gains to be achieved. Promoted by harmonised global policy change, innovative plant breeding can realise high and sustainable productivity together with enhanced nutritional traits
    • …
    corecore