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Summary 

Plant tissues, particularly roots, can be subjected to periods of hypoxia due to 

environmental circumstances. Plants have developed various adaptations in 

response to hypoxic stress and these have been extensively described. Less well-

appreciated is the body of evidence demonstrating that scavenging of nitric oxide 

(NO) and the reduction of nitrate/nitrite regulate important mechanisms that 

contribute to tolerance to hypoxia. Whilst ethylene controls hyponasty and 

aerenchyma formation, NO production apparently regulates hypoxic ethylene 

biosynthesis. In the hypoxic mitochondrion, cytochrome c oxidase, which is a major 

source of NO, is also inhibited by NO, thereby reducing the respiratory rate and 

enhancing local oxygen concentrations. Nitrite can maintain ATP generation under 

hypoxia by coupling its reduction to the translocation of protons from the inner side of 

mitochondria and generating an electrochemical gradient. This reaction can be 

further coupled to a reaction whereby non-symbiotic haemoglobin oxidizes NO to 

nitrate. In addition to these functions, nitrite has been reported to influence 

mitochondrial structure and supercomplex formation, as well as playing a role in 

oxygen sensing via the N-end rule pathway. These studies establish that nitrite and 

NO perform multiple functions during plant hypoxia and suggest that further research 

into the underlying mechanisms is warranted. 

 

Keywords: cytochrome c oxidase, hyponasty, hypoxia, mitochondria, nitric oxide 

(NO), nitrite.
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Introduction 

Molecular oxygen facilitates the efficient production of ATP in all aerobic eukaryotic 

organisms by providing the terminal electron acceptor for the mitochondrial electron 

transport chain. Oxygen deprivation, leading to a state of hypoxia (low oxygen) or 

anoxia (no oxygen), compromises the process of oxidative phosphorylation. For 

plants, this problem typically arises during flooding (Bailey-Serres et al., ‎2012) as a 

result of the 104-fold reduction in gaseous diffusion in flood water (Armstrong, 1979). 

Moreover, even under optimal growth conditions, certain dense tissues such as 

seeds (Borisjuk et al., 2007) and tubers (Geigenberger et al., 2000) are hypoxic, with 

O2 concentrations in the range 1 - 50 µM. While the latter observations indicate that 

plants can cope with low levels of O2 during normal development, hypoxia inevitably 

restricts the availability of oxygen for oxidative phosphorylation and increases the 

importance of fermentation as a source of ATP (Ricard et al., 1994). As a result, 

plant metabolism must adapt to lower ATP production, including the induction of 

energy-conserving pathways of sucrose degradation that lead to improved plant 

performance under hypoxia (Geigenberger et al., 2000; Bologa et al., 2003).  

 

As well as metabolic adaptions to hypoxia, plants have also developed anatomical 

and morphological adaptations, including the formation of aerenchyma, aerial 

adventitious roots, and leaf gas films (Bailey-Serres et al., ‎2012). Responses to 

hypoxia have been extensively studied in plants and many transcriptional, post-

translational and metabolic events that regulate these responses have been 

identified (Geigenberger et al., 2000; Licausi et al., 2011; Narsai et al., 2017; Fukao 

et al., 2019). One emerging theme is the involvement of reactive oxygen species 

(ROS) and nitric oxide (NO) signalling under low oxygen in plants (Pucciariello and 

Perata, 2017), and in this update the intention is to focus on the multiple roles of NO 

and nitrite in the hypoxic response. 
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Hypoxic synthesis and turnover of NO 

NO is a free radical signalling molecule that is produced by several oxidative and 

reductive pathways (Gupta et al., 2011; Astier et al., 2017). The reductive pathways 

are active under hypoxic conditions, with mitochondria playing a major role in NO 

production through the action of cytochrome oxidase (COX) and other 

deoxyhemeproteins (Figure 1). Isolated plant mitochondria typically produce NO at a 

rate of 1-20 nmol.mg protein-1.h-1 within a few minutes of adding NADH and nitrite to 

a hypoxic incubation medium, and the Ki for oxygen, which inhibits the process, is 

0.05% (Gupta et al., 2005). High levels of NO lead to cell death (Wang et al. 2013), 

so if NO is to have other signalling functions under hypoxia it is necessary to have 

mechanisms for preventing its excessive accumulation. 

 

NO production is countered by NO degradation, with several haem proteins such as 

flavohaemoglobin, haemoglobin (Hb), myoglobin and their associated reductases 

fulfilling this role in animal cells (Gardner, 2005) and flavoglobin scavenging NO in 

yeast (Liu et al., 2000; Cassanova et al., 2005). In plants, Class 1 phytoglobins (Pgb) 

are efficient NO scavengers (Hebelstrup et al., 2008) and their very high affinity for 

oxygen (Km ~ 2 nM) allows them to function under hypoxia (Figure 1). 

Overexpression of the Pgb gene in barley decreased NO release under hypoxia, 

while knockdown of the gene increased it, confirming that Pgb makes a significant 

contribution to the regulation of NO levels (Cochrane et al., 2017). The inhibition of 

COX by NO (Brown and Cooper, 1994; Cleeter et al., 1994) also facilitates the 

operation of the oxygen-requiring Pgb-NO cycle under hypoxia by inhibiting 

respiration at low oxygen concentrations. Thus under hypoxia oxygenated Pgb 

converts NO to nitrate, and the resulting metphytoglobin is converted back to Pgb by 

monodehydroascorbate reductase-mediated ascorbate reduction (Igamberdiev et al., 

2006; Gupta and Igamberdiev, 2011). The Pgb-NO cycle also regenerates NAD+ and 

may be considered an alternative to the usual pathways of fermentation 

(Igamberdiev and Hill, 2004), although like lactate fermentation, the Pgb-NO cycle is 

acidifying (Libourel et al., 2006) and thus a potential contributor to acidosis under 

hypoxia.  
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S-nitrosoglutathione reductase (GSNOR) is another enzyme that contributes to the 

regulation of NO levels in plants (Leterrier et al., 2011). GSNOR converts the NO 

derivative S-nitrosoglutathione (GSNO) to oxidised glutathione (GSSG) and 

ammonia, and it was recently shown that the inhibitory NO-dependent S-nitrosation 

of GSNOR1 (Frungillo et al., 2014) leads to degradation of the enzyme by selective 

autophagy (Zhan et al., 2018). Elimination of the S-nitrosation site in GSNOR 

abolished the positive effect of NO on the hypoxic germination of Arabidopsis seeds, 

indicating that the NO-dependent post-translational modification of GSNOR is a 

physiologically relevant process that contributes to the hypoxic response (Zhan et 

al., 2018). Elevated GSNO was shown to increase the expression of both alcohol 

dehydrogenase and pyruvate decarboxylase in germinating Arabidopsis seeds (Zhan 

et al., 2018) emphasising the importance of GSNOR regulation by NO under 

hypoxia. 

 

NDB-type dehydrogenases also play a role in NO degradation by forming superoxide 

anions that convert NO to peroxynitrite (ONOO-) (de Oliveira et al., 2008). This route 

of NO degradation is stimulated by calcium, and abolished by superoxide dismutase 

and complete anoxia. These observations indicate that NDB dehydrogenases 

actively generate superoxide, and are involved in superoxide-dependent NO 

degradation. NDB-type dehydrogenases were also found to be induced in transgenic 

Arabidopsis plants with downregulated expression of GSNOR (Frungillo et al., 2013), 

providing further correlative evidence for their role in NO homeostasis.  

 

The net result of these biosynthetic and degradative pathways is a marked increase 

in NO production in response to hypoxia. This increase is in turn increasingly 

implicated in a range of adaptive responses to oxygen deprivation, including 

hyponasty, aerenchyma formation, oxygen homeostasis, mitochondrial activity and 

oxygen sensing  
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Role of NO in hyponasty under hypoxia 

The hyponastic response is a highly effective escape strategy employed by most 

plant species following submergence, shade or elevated ambient temperatures. It is 

accompanied by a strong directional growth mediated by reversible turgor reactions 

and changes in the osmotic state of the cells. It mainly depends on the unequal 

growth rates of two anatomically different sides of the organ in question. Hyponasty 

can be defined as a type of asymmetric growth, whereby abaxial tissue displays a 

higher growth rate than the adaxial cells. It is a common feature in leaf blades and 

petioles of many monocots and dicots (Polko et al., 2011).  

 

During flooding, ethylene plays a major role in the hyponastic response due to its 

reduced diffusion in submerged tissues (Voesenek et al., 1993). Vreeburg et al. 

(2005) showed that ethylene-mediated hyponastic signaling is characterized by 

acidification of the apoplast and a higher expression of expansin proteins, both of 

which play important roles in modifying cell wall structure. Ultimately, ethylene 

responsive factors (ERFs) mediate hyponasty, however, the function of these 

proteins is gibberellin (GA) dependent (Polko et al., 2011). Other hormones are also 

implicated in the process, with auxins such as indole-3-acetic acid (IAA) positively 

regulating stage-specific submergence-induced hyponasty, whilst abscisic acid 

(ABA) acts as a negative regulator of this process (Cox et al., 2006).  

 

NO is also involved in the complex signalling network leading to hyponasty. 

Arabidopsis seedlings produce increased ethylene and NO under hypoxia, and Pgb 

gene expression (AtGLB1) correlated with hyponastic growth (Hebelstrup et al., 

2012). These observations led to the proposal that NO likely acts as a regulator of 

hyponasty via induction of ethylene synthesis. Plants also experience shading and 

reduced light levels during flooding, and since shading alone can induce an 

ethylene-dependent hyponastic response (Pierik et al., 2009) it is possible that 

shade also has an impact on NO metabolism. It is known that light-dark dynamics 

can influence both NO and nitrite levels (Planchet et al., 2005), but the relevance of 

this observation under more natural conditions remains to be evaluated. 
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Role of NO in the formation of ethylene-induced aerenchyma 

Another adaptive response of plants to hypoxia is the formation of aerenchyma, the 

gas-filled tissue that allows the exchange of gases between shoot and root under 

conditions of flooding and waterlogging (Drew et al., 2000). Schizogenous 

aerenchyma is formed by a process of cell separation at the middle lamella during 

cell development, whilst lysigenous aerenchyma is formed as a consequence of the 

random death of cortical cells. It was previously shown that hypoxia is an inducer of 

aerenchyma formation (Drew et al., 2000), and that ethylene plays a role in cortical 

cell death (Yamauchi et al. 2014). NO also plays a role in programed cell death 

(Delledonne et al., 1998; Chen et al., 2009; Wang et al., 2013), and so the possibility 

arises that NO could play a role in aerenchyma formation in hypoxic tissues given 

that NO production takes place within a few minutes of the onset of hypoxia (Gupta 

et al., 2005).  

 

Recently Wany et al. (2017) investigated whether ethylene-induced aerenchyma 

formation in wheat roots required hypoxia-induced NO. Wheat roots produced NO 

under hypoxia as expected, and scavenging of NO by 2-(4-carboxyphenyl)-4,4,5,5-

tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) led to a marked reduction in 

aerenchyma formation following 24 or 48 hours of hypoxia. Interestingly, it was found 

that hypoxically-induced NO was important for the induction of the genes encoding 

1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase, both of 

which are required for ethylene biosynthesis, as well as the ethylene-responsive 

genes ERF1 and PDF13. Cell death events such as increased electrolyte leakage, 

increased cellulase activity, DNA fragmentation, and cytoplasmic streaming were all 

inhibited under hypoxia in the presence of the NO scavenger, reinforcing the 

conclusion that NO is essential for the development of ethylene-induced aerenchyma 

(Wany et al., 2017). Moreover, ethylene inhibitors and NO scavengers, either alone 

or in combination, suppressed the genes involved in signal transduction leading to 

aerenchyma development. These findings suggest that NO plays a role in 

aerenchyma formation in wheat, acting either upstream of ethylene, or in parallel 

with it. The involvement of NO in aerenchyma formation was also indicated by the 

observation that the respiratory burst oxidative homolog/NADPH oxidase 
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(RBOH/NOX) gene, which is known to have a role in aerenchyma formation (Yun et 

al., 2011), is also induced by NO (Wany et al., 2017). RBOH/NOX plays a role in 

superoxide production, hence the induction of RBOH/NOX by NO, correlated with 

the generation of ROS in wheat cortical cells. Since superoxide reacts with NO to 

form peroxynitrite, a strong nitrating agent, increased tyrosine nitration was observed 

during aerenchyma formation. It will be interesting to see whether these results can 

be replicated under conditions more akin to natural flooding events, since ethylene is 

known to accumulate to saturating levels rapidly and the possibility of induction by 

NO has not been considered hitherto (Sasidharan et al., 2018). 

 

Plants are well equipped with detoxification systems to counter the deleterious 

effects of ROS and NO. In particular, there are many regulatory mechanisms that 

influence the levels of ROS and NO, thus protecting plants from severe damage 

under stress conditions. However, during processes such as programmed cell death 

and aerenchyma formation, plant cells need to maintain high ROS levels in the 

tissues where limited cell death is advantageous. One strategy to achieve this is to 

lower antioxidant gene expression (Liu et al., 2018). Wany and Gupta (2018) found 

an inverse correlation between antioxidant gene expression and increased ROS 

following 24 h of hypoxia in wheat roots during aerenchyma formation. NO is known 

to increase antioxidant gene expression during stress (Tossi et al., 2011), but during 

cell death it seems that suppression of the antioxidant mechanism is required. A 

prominent example is the inhibition of glycine decarboxylase by S-nitrosation, which 

alters cellular redox status and promotes cell death (Palmieri et al., 2010). A survey 

of S-nitrosylated proteins in cells undergoing aerenchyma formation could potentially 

afford new insights into the role of NO in the promotion or limitation of cell 

progression. Such insights could be based on transgenic manipulation of root NO 

levels, for example by over-expression of Pgb, during aerenchyma formation, 

although this approach might also affect oxygen homeostasis and root development 

(Gupta et al., 2014). An alternative approach might be to test the relationship 

between the nitrogen status of the soil and aerenchyma formation, given that the 

synthesis of NO ultimately depends on the availability of nitrate (Planchet et al., 

2005; Gupta et al., 2013). Preliminary evidence suggests that nitrate nutrition, as 
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opposed to ammonium nutrition, favours aerenchyma formation and this needs 

further investigation (Wany and Gupta, 2018). 

 

While the recent evidence suggests that NO is essential for the development of 

aerenchyma via cortical cell death under flooding stress (Wany et al., 2017), it is 

necessary to regulate the levels of NO in other root zones to avoid cell death in 

tissues required for continued growth (Mira et al., 2016a). The root apical meristem 

(RAM) contains stem cells which are important for root growth and it has been 

shown that transgenic suppression of the hypoxically-induced phytoglobins 

ZmPgb1.1 or ZmPgb1.2. led to structural abnormalities in RAM (Mira et al., 2016b). 

Suppression of Pgb also enhanced expression of ethylene biosynthetic and 

responsive genes, providing further support for the role of Pgbs in regulating NO 

levels under hypoxia. In contrast, overexpression of Pgb improved hypoxic root 

growth by alleviating apical meristem cell death again emphasising the role of Pgbs 

as NO scavengers. These observations highlight the need for differential regulation 

of Pgb expression in different root zones to ensure that hypoxically-induced NO can 

promote cortical cell death and aerenchyma formation without damage to the stem 

cells in the RAM. The mechanism by which this is achieved is not fully understood, 

but it is relevant that exposure of the root apex to hypoxia has been shown to lead to 

increased hypoxic acclimation of the entire root (Mugnai et al., 2012), emphasising 

the existence of systemic signalling pathways that coordinate cell-type specific 

responses to hypoxia.  

 

Role of NO in oxygen homeostasis  

Oxygen homeostasis is important for maintaining an appropriate internal oxygen 

level in tissues during normal development. This phenomenon is crucial when 

environmental effects, such as flooding and waterlogging, reduce the oxygen supply 

and drive the tissues towards anoxia. Recently it was shown that NO has a potential 

role in oxygen homeostasis under normoxia via the regulation of respiration (Gupta 

et al., 2014). It is well known that NO inhibits respiration by inhibiting cytochrome c 

oxidase in isolated mitochondria (Millar and Day, 1998). NO binds to the Fe2+-haem 
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group at the O2-binding site of the binuclear centre Fea3CuB in COX (Cleeter et al., 

1994) and this provides the basis for an autoregulatory mechanism in which 

increasing NO under hypoxia reduces oxygen consumption. The relevance of this for 

oxygen homeostasis has been demonstrated in normoxic barley roots, where 

overexpression of Pgb promoted NO scavenging, increased the respiration rate, and 

decreased the internal oxygen level (Gupta et al., 2014). Overexpression of Pbg also 

affected the normoxic NO signalling pathways in barley (Cochrane et al., 2017). The 

physiological significance of this effect has been shown in both seeds (Borisjuk et al., 

2007) and isolated mitochondria (Benemar et al., 2008), where it was shown that 

nitrite reduction at complex III reversibly inhibited COX, and thus contributed to the 

maintenance of a steady state level of oxygen in the mitochondria. 

 

The role of NO in oxygen homeostasis is also important in seed germination. This 

process is associated with the production of NO and a decrease in ABA via 

regulation of CYP707A2 transcription and (+)-abscisic acid 8′-hydroxylase (Liu et al., 

2009). Gibbs et al. (2014b) reported that both NO and oxygen availability promote 

degradation of ERF VII transcription factors during the metabolically active state of 

seed development, leading to down-regulation of AB15 in the endosperm and the 

promotion of germination. 

 

Role of NO in mitochondrial activity under hypoxia  

Oxygen deprivation can have a marked effect on plant mitochondrial structure, and 

the observed changes correlate to some extent with the ability of the plant to survive 

periods of hypoxia or anoxia (Vartapetian et al., 2003; Shingaki-Wells et al., 2014). 

Nitrate has been shown to have a protective effect on mitochondrial ultrastructure 

under these conditions (Vartapetian et al., 2003), but recent evidence suggests that 

nitrite confers similar protection, and that the reduction of nitrite to NO under hypoxia 

is important for the maintenance of some level of mitochondrial activity (Gupta et al., 

2017). Thus incubating hypoxic pea root mitochondria with 0.5 mM nitrite resulted in 

increased NO production, improved mitochondrial integrity, improved energization of 

the inner mitochondrial membrane, increased ATP synthesis, lower levels of reactive 
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oxygen species, and decreased lipid peroxidation. Nitrite also increased the activities 

of complex I and the supercomplex I + III2 under hypoxia. These observations 

highlight the far-reaching effects of nitrite on the hypoxic mitochondrion (Gupta et al., 

2017). 

 

The effect of nitrite on the activities of complex I and the supercomplex I + III2 under 

hypoxia (Gupta et al., 2017) may well be important in promoting the reduction of 

nitrite to NO through the maintenance of a fully functional electron transport chain. In 

tobacco plants deficient in complex I, reduced electron flow in the mitochondrial ETC 

led to lower NO production (Shah et al., 2013); while supercomplex formation is 

considered to increase the efficiency of electron transport (Cogliati et al., 2016). The 

fact that nitrite treatment under hypoxia increases the activities of complex I and the 

supercomplex I + III2 hints at a regulatory role for either nitrite or NO under these 

conditions. 

 

Interpretation of all the effects of nitrite on mitochondrial function under hypoxia is 

complicated by the potential regulatory effects of the hypoxically-generated NO. For 

example, COX, the major site for the production of hypoxically-generated NO, is 

inhibited by NO (Cleeter et al., 1994) and the interaction with NO can increase the 

efficiency of oxidative phosphorylation (Clerc et al., 2007). These factors are seen in 

the nitrite-stimulated increase in ATP synthesis in hypoxic pea root mitochondria 

(Gupta et al., 2017), but at the same time it should be noted that NO scavenging by 

mitochondria, or via cytosolic scavenging systems, is considerable, with tobacco root 

mitochondria, for example, consuming 87% of the NO applied within two minutes 

(Kumari et al., 2016). 

 

Hypoxically-produced NO may also alter mitochondrial activity through changes in 

AOX activity. There are established links between AOX and NO, with AOX 

preventing excess NO production in tobacco leaves (Cvetkovska and Vanlerberghe, 

2012), and NO inducing AOX under hypoxia (Gupta et al., 2012) and phosphate 
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deficiency (Royo et al., 2015). Recently, Vishwakarma et al. (2018) demonstrated 

that AOX prevents excess production of NO, peroxynitrite and tyrosine nitration 

under normoxia. However, it was also found that AOX can generate NO under 

hypoxia, and that the NO was oxidized via the Pgb-NO cycle (Vishwakarma et al., 

2018). Inhibiting AOX under hypoxia led to lower ATP, but AOX overexpressing lines 

produced more ATP. These data suggested that AOX-mediated NO production plays 

a role in the production of ATP under hypoxia by supporting proton translocation 

through complex I. Interestingly, in contrast to normoxia, it was shown that excess 

NO generated under hypoxia did not lead to the formation of peroxynitrite and 

tyrosine nitration. Thus, the link between AOX and NO differs between normoxia and 

hypoxia. 

 

The phenomena of nitrite-driven ATP synthesis and mitochondrial protection are 

important in specialized structures such as nodules (Berger et al., 2018). Medicago 

truncatula nodules have been shown to increase their production of NO when 

submitted to hypoxic conditions (Horchani et al., 2011). The nodule oxygen 

concentration in the cytosol of the host plant cells is typically in the range 5-60 nM 

due to diffusion resistance and the respiration of the bacteroids. Under these 

conditions AOX does not contribute to respiration due to its higher Km, but COX with 

a Km value of 50 nM (Millar et al., 1995) is expected to be functional. However, 

whether the amount of oxygen supplied by leghemoglobin (Km for oxygen binding 2 

nM) to the mitochondria is sufficient for energy production remains an open question 

(Horchani et al., 2011).  

 

As both Lb and Pgb have the capacity to oxidize NO or nitrate, this may allow the 

Pgb-NO cycle to operate generating a limited amount of ATP to sustain nodule 

development and function. The study by Horchani et al. (2011) provided evidence 

that in N2-fixing nodules of M. truncatula, the energy status of the nodules depends 

largely on NR functioning under normoxic, or hypoxic conditions. Thus, the Pgb-NO 

cycle can increase energy efficiency in specialised hypoxic organs such as nodules.  
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Role of NO in oxygen sensing under hypoxia 

The precision and specificity of the control of molecular and physiological responses 

to low oxygen stress (Geigenberger et al., 2000) suggests that plants possess 

sensitive oxygen-sensing mechanisms to initiate hypoxic responses. Direct and 

indirect sensors help in the development of these responses. Direct sensors are 

specific proteins such as transcriptional activators or repressors that sense oxygen. 

Prominent examples are the transcription factor hypoxia-inducible factor-1-alpha 

(HIF-1α) in animals (Brahimi-Horn et al., 2005), and a heme-binding protein kinase, 

FixL in rhizobial bacteria (Akimoto et al., 2003). In contrast, indirect sensing relies on 

hypoxically-induced changes in such properties as calcium levels, energy status and 

redox status to trigger regulatory mechanisms (Bailey-Serres and Chang, 2005).  

 

Recently, the direct oxygen sensing mechanism known as the N-end pathway has 

been shown to initiate the response of plants to hypoxia (Licausi et al., 2011; Gibbs 

et al., 2011). This is an evolutionarily conserved pathway for protein degradation 

whereby the stability of a protein is determined by the identity of its N-terminal 

residues (Varshavsky, 2011; Gibbs et al. 2014a; 2015). Specifically, the presence of 

N-degrons and N-terminal destabilizing residues determines whether a protein will 

be degraded by the proteasome (Graciet et al., 2009; Holman et al., 2009). Group 

VII ethylene response factors (ERFs), which have been shown to be important 

regulators of the response to low oxygen (Hinz et al., 2010; Licausi et al., 2010, 

2011; Gibbs et al., 2011, 2015), are oxygen-dependent substrates of the N-end rule 

pathway: these proteins are destabilised in the presence of oxygen and NO and 

stabilised in their absence. More recently, the polycomb repressive complex 2 

component VRN2 has also been identified as an O2/NO regulated target of the N-

end rule pathway, suggesting a potential link between low oxygen/NO and the 

epigenetic control of gene expression (Gibbs et al., 2018). 

 

The N-terminal (Nt) MCGGAII/L domain of the ERFVII transcription factors is the 

target for the N-end rule degradation pathway. Under aerobic conditions, methionine 

amino peptidase cleaves the Nt-Met to reveal an Nt-Cys, which is then oxidized by 
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plant cysteine oxidases (PCOs) to produce Nt-Cys sulfinate. The oxidized Nt-Cys is 

arginylated by an arginyl transferase, creating a substrate for an E3 ligase which 

leads to polyubiquitination and proteasomal degradation of the ERFVII protein 

(Figure 2). The role of the PCOs in controlling hypoxic gene expression has been 

confirmed by genetic studies (Weits et al., 2014) and the molecular mechanism of 

the oxidation and arginylation steps has been characterized in vitro (White et al., 

2017). 

 

The extent to which NO influences the oxygen sensing system in plants is unclear. 

In animal systems, it has been shown that the in vivo oxidation of Nt-Cys before 

arginylation requires NO (Hu et al., 2005) and the hydrolysis of S-nitrosothiols can 

produce sulfenic acids as the first step in the formation of sulfinic acids (Reddie and 

Carroll, 2008). In agreement with this, there is some evidence that NO, as well as 

oxygen, may be required for the degradation of ERFVIIs. Gibbs et al. (2014b) 

showed that ERFVIIs are destabilized in the presence of NO, and stabilized in their 

absence. In particular, the stability of two ERFVIIs, RAP2.3 and HRE2, was 

increased in Arabidopsis seedlings in the presence of NO scavengers, and also in in 

the nitrate reductase-deficient nia1nia2 mutant, which has greatly reduced levels of 

NO. More recently, Vicente et al. (2017) demonstrated that down-regulation of nitrate 

reductase in Arabidopsis led to lower NO levels and increased stability of ERFVIIs, 

an effect which was implicated in abiotic stress sensing under normoxia. While it 

remains the case that low oxygen is the primary determinant of ERFVII stability, the 

sensitivity of ERVIIs to NO raises the possibility that the change in NO levels under 

hypoxia could modulate the oxygen sensing role of the ERFVIIs.  

 

Another consideration, which needs further investigation, is the potential impact of 

ROS generation under low oxygen (Vergara et al., 2012). In principle, this could 

oxidise the Cys residues of ERFVIIs and thus work against their stabilization under 

hypoxia. At the same time, hypoxia-induced NO generation by mitochondria could 

play a role in removing excess ROS to ensure the stability of ERFVIIs under hypoxia, 

but the extent to which this is important has yet to be established and could well 
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differ between nitrate- and ammonium-grown plants (Wany et al., 2019). More 

generally the sensitivity of mitochondrial activity to oxygen availability might suggest 

that mitochondrially-derived NO and ROS could contribute to retrograde signalling in 

the hypoxic state, but this also remains to be established.  

 

Concluding remarks 

It is now clear that nitrite and NO play important and multi-faceted roles in the 

response of plants to hypoxia. These include classical morphological changes such 

as hyponasty, the protection of mitochondrial structure, ATP generation and ROS 

scavenging. However, the role of hypoxically produced NO in various other plant 

anatomical adaptive responses to flooding, such as aerial lateral root formation, stem 

elongation, suberin and lignin accumulation needs more investigation. Cross talk 

between NO and growth hormones such as ethylene, auxin, and ABA during these 

adaptive responses to hypoxia would also merit further investigation. Another area of 

interest is the potential effect of the nitrogen supply on hypoxic tolerance given that 

both nitrite and NO are derived from nitrate. For example, lines with differing nitrogen 

use efficiency could improve the availability of nitrate and hence affect tolerance to 

hypoxia. Other targets for further analysis of the role of nitrite and NO under hypoxia 

include germinating seeds, which experience varying degrees of hypoxia during 

development, and bulky tissues, where the availability of nitrite might be key to the 

maintenance of metabolism through its protective effect on the mitochondria. Finally, 

soil microbes can produce high levels of NO during hypoxia which raises the 

important question of whether plants are able to distinguish soil-derived NO from that 

produced endogenously. 
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Figure Legends: 

Figure 1: Operation of the phytoglobin/nitric oxide (Pgb/NO) cycle under hypoxic 

conditions. The reduction of nitrite to NO occurs at complex III (bc1), complex IV 

(cytochrome c oxidase), and the alternative oxidase (AOX). The NO diffuses to the 

cytosol where it is converted to nitrate (NO3
−) by the hypoxia-induced class 1 

phytoglobin (PgbO2), which leads to the formation of metphytoglobin (MetPgb), 

which is reduced by metphytoglobin reductase (MetPgbR). Nitrate is then reduced by 

nitrate reductase (NR) to nitrite, which is imported into mitochondria by either a 

putative nitrite transporter (NT) or passive diffusion. NAD(P)H generated in the 

cytosol is oxidized by the externally facing calcium-dependent mitochondrial 

dehydrogenases (ND), or, after import into the mitochondria as reducing equivalents, 

by complex I. Cyt c, cytochrome c; IMM, inner mitochondrial membrane; IMS, 

intermembrane space; UQ, ubiquinone. 

 

Figure 2: A. The role of nitric oxide (NO) and oxygen in the control of group VII 

ethylene response factor (ERF) stability under normoxia. Methionine amino 

peptidase (MetAP) cleaves the Nt-Met to reveal an Nt-Cys, which is then oxidized by 

plant cysteine oxidases (PCOs) to produce Nt-Cys sulfinate (shaded yellow symbol). 

NO potentially facilitates this oxidation. The oxidized Nt-Cys is arginylated by an 

arginyl-tRNA protein transferase (ATE1/2), creating a substrate for the N-end rule E3 

ligase (PRT6) which leads to polyubiquitination and proteasomal degradation of 

ERFVII. It has been shown that NO is also required for degradation of ERFVIIs, and 

that stress induced reductions in endogenous NO levels can lead to enhanced 

stability of ERFVIIs even under normoxia (Vicente et al., 2017), thus identifying NO 

as a signal controlling the accumulation of these proteins in response to stress. 

B. Under hypoxia, high levels of NO are produced via increased activity of nitrate 

reductase and mitochondrial nitrite reduction. However, because ERFVII degradation 

also requires oxygen, these increased levels of NO are not able to degrade ERFVIIs. 

The NO generated under hypoxia can help in plant survival via aerenchyma 

formation, protection of mitochondria, hyponasty, regulation of reactive oxygen 

species (ROS), the Pgb-NO cycle, and the limited production of ATP. Some of these 
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adaptive responses are mediated by NO, and some are mediated by stabilization of 

ERFVIIs or both. 
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