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Plant hemoglobins constitute a diverse group of hemeproteins and evolutionarily belong to three
different classes. Class 1 hemoglobins possess an extremely high affinity to oxygen and their main
function consists in scavenging of nitric oxide (NO) at very low oxygen levels. Class 2 hemoglobins
have a lower oxygen affinity and they facilitate oxygen supply to developing tissues. Symbiotic
hemoglobins in nodules have mostly evolved from class 2 hemoglobins. Class 3 hemoglobins are
truncated and represent a clade with a very low similarity to class 1 and 2 hemoglobins. They
may regulate oxygen delivery at high O2 concentrations. Depending on their physical properties,
hemoglobins belong either to hexacoordinate non-symbiotic or pentacoordinate symbiotic groups.
Plant hemoglobins are plausible targets for improving resistance to multiple stresses.
� 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

When we think of hemoglobin we immediately remember
oxygen transport within erythrocytes in the circulatory system of
blood. It may be therefore surprising that non-blood containing
plants also encode hemoglobins. The name hemoglobin comes from
the globular structure associated with heme prosthetic group which
binds oxygen. However, hemoglobins not only bind oxygen but also
other ligands such as nitric oxide (NO), carbon monoxide (CO),
hydrogen sulfide (H2S) and even organic molecules such as certain
membrane lipids [1,2]. The concentration of hemoglobin in erythro-
cytes is in the order of ten millimolar whilst that of myoglobin in the
skeletal muscle is in the submillimolar range. In plants, hemoglobin
was first studied within symbiotic nitrogen-fixing root nodules,
where ‘‘leghemoglobin’’ (legHb) plays a key role transporting free
oxygen away from the oxygen-sensitive-nitrogenase enzyme. The
concentration of legHb can reach 0.7 mM in nodules rendering them
with their characteristic red color. It is also the case than plants pro-
duce hemoglobins with a non-symbiotic role but concentrations are
usually in the region of 5–20 lM upon induction [3], too low for
plants to be red.
chemical Societies. Published by E

erdiev).
Plant hemoglobins constitute a diverse group of hemeproteins
and evolutionary belong to three different classes. Class 1 hemoglo-
bins possess an extremely high affinity to oxygen (Km in the order of
2 nM [4,5]) and their main function seems to be related to scaveng-
ing NO [6]. This role appears to be essential as nitric oxide emerged
as an important molecule that influences responses to abiotic and
biotic stresses [7]. Further, NO controls many developmental pro-
cesses such as seed dormancy, root development, and transition
to flowering [8,9]. Plant acclimation and tolerance to cold is trig-
gered by nitrate reductase-produced NO, which regulates the
expression of genes involved in phosphatidic acid synthesis and
sphingolipid phosphorylation. Class 1 hemoglobins modulate this
response by scavenging NO [10].

Class 2 hemoglobins have a lower oxygen affinity (Km of the
order of 150 nM [11,12]) and their function is related to facilitating
oxygen supply to developing tissues [12,13]. Symbiotic hemoglo-
bins in nodules have mostly evolved from class 2 hemoglobins.
As such they can be considered as a subclass of class 2 that have
acquired specific structural properties to support symbiosis with
nitrogen-fixing bacteria via buffering of oxygen concentration. It
should be noted that a few symbiotic hemoglobins (sHb), such as
Parasponia Hb, have originated from class 1, which are classically
thought to have non-symbiotic roles (nsHb). Class 3 hemoglobins
(truncated version; trHb) represent a group with a very low simi-
larity to class 1 and 2 hemoglobins and having low affinity to O2
lsevier B.V. All rights reserved.
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(Km � 1500 nM) [14]. Their function is obscure but may be related
to regulation of oxygen delivery at high O2 concentrations [14]. We
will now further elaborate on the structure-functional and evolu-
tionary basis of the plant hemoglobin classes.

2. Non-symbiotic plant hemoglobins are hexacoordinate while
symbiotic are pentacoordinate

Biochemically, hemoglobins can be divided into two groups
based on coordination of heme iron and this also corresponds in
plants to the division between non-symbiotic and symbiotic hemo-
globins. The heme prosthetic group contains an iron atom with
four of the six coordination sites occupied by the heme pyrrole
nitrogens. It is further attached to histidines of the globin moiety
through coordination of either one or two histidine side chains
[15] (Fig. 1). Those hemoglobins with one histidine coordinating
the fifth site of the heme iron, leaving the sixth open for exogenous
ligand binding, are designated ‘‘pentacoordinate’’ (examples in-
clude the erythrocyte hemoglobin and other oxygen transporters).

Those in which the iron coordinates with both the proximal and
distal histidine, similarly to the heme active site of cytochrome b5,
are called ‘‘hexacoordinate hemoglobins’’. While the first (proxi-
mal) histidine is bound tightly to the heme iron, the coordination
of the second (distal) histidine is reversible and differs signifi-
cantly, allowing for binding of exogenous ligands such as oxygen,
carbon monoxide, and nitric oxide. In most cases, hexacoordinate
hemoglobins contain certain portion of molecules with the heme
in a pentacoordinated state. Pentacoordinate hemoglobins are
adapted to the function of oxygen buffering and delivery because
the pentacoordinate state allows oxygen to bind reversibly giving
optimal condition for storage and transportation functions.

3. Three classes of plant hemoglobins

While the classification of plant hemoglobins based on coordi-
nation of iron and on symbiotic/non-symbiotic functions is useful
it does not fully reflect their evolutionary origin and structural
properties. Since the discovery of non-symbiotic plant hemoglo-
bins [16,17] which followed after the description of the unusual
symbiotic hemoglobin from Parasponia by Appleby et al. [18],
other globins genes were found in plants [19]. As a result all plant
hemoglobins were classified into three distinct groups based on
their evolutionary origin and physical behavior. Phylogenetic anal-
yses readily differentiate plant hemoglobins into three different
clades (Fig. 2) which correspond to class 1, class 2, and truncated
(class 3) hemoglobins. In two of these clades (class 2 and to less
extent class 1) the evolution was observed from nsHb hexacoordi-
nate towards sHb pentacoordinate hemoglobins. The class 2 nsHb
Fig. 1. Coordination of proximal (HP) and distal (HD) histidines in pentacoordinate and h
ligands such as O2 and NO, while the hexacoordinate structure facilitates tight binding of
formation of nitrate (NO3

-).
has the highest hexacoordination level whereas the degree of coor-
dination in class 1 nsHb is much lower.

Gene sequence analysis of class 1 and 2 plant hemoglobins with
other hemoglobins show that they are distantly related to animal
myo- and hemoglobin whereas the primary structure of the class
3 truncated type of (trHbs) suggests that this class is closer related
to bacterial hemoglobins [14]. These proteins (class 3) share
40–45% sequence similarity with bacterial hemoglobins of the
‘‘2-on-2’’ structural motif, and likely appeared in plants due to a
horizontal gene transfer from bacteria. Although they are charac-
terized by ‘‘2-on-2’’ motif (the fold is based on a ‘‘2 on 2’’ a-helical
sandwich) as compared to ‘‘3-on-3’’ sandwich of other plant hemo-
globins (and therefore called truncated), in plants they actually
have longer amino acid chain than the class 1 and 2 hemoglobins
[4].

The relationship of class 1 and 2 plant hemoglobins with animal
myo- and hemoglobins is confirmed by structural analysis. The
molecular structure of barley or rice nsHb (class 1) and soybean
sHb (class 2) shows a remarkably similarity with animal myo-
and hemoglobin [20]. The relationship is also confirmed by the
intron–exon structure of the genes. Animal myo- and hemoglobin
genes have two conserved introns in common with nsHb and sHb.
However nsHb and sHb have an additional third intron between
the two conserved introns. Interestingly such a third central intron
is also found in the genes of neuro- and cytoglobins of vertebrates
(globins expressed in neural and brain tissue, most in marine
mammals, and may offer protection against the hypoxia) and in
hemoglobin genes from invertebrates [21,22]. This indicates that
the three introns is a more ancient version of the gene, and that
the third central intron was lost in the evolution of animal myo-
and hemoglobins. Early comparisons of animal hemoglobin
molecular structure with intron–exon predicted that each intron
represents a protein sub-domain and that a third central intron
had been lost during evolution. The relationship in molecular
structure and DNA sequences of class I and II plant nsHbs with ani-
mal myo- and hemoglobin suggests that they are derived from a
common primordial hemoglobin gene in a eukaryotic ancestor.
Such a common unicellular ancestor of plants and animals is esti-
mated to have lived 1500 million years ago [23].
4. Class 1 plant hemoglobins

4.1. Structural and functional properties of class 1 non-symbiotic
hemoglobins

The common property of non-symbiotic class 1 hemoglobins
that distinguishes them from other hemoglobins is a low value of
the hexacoordination equilibrium constant (KH), which is the bind-
exacoordinate heme. The pentacoordinate structure is open for reversible binding of
oxygen that can further accept an electron from iron and oxygenate NO resulting in



Fig. 2. The evolutionary tree of plant globins showing that they are classified into three ‘‘classes’’, each containing hexacoordinate members (marked by asterisks). Evolution
to the symbiotic hemoglobins (which include leghemoglobins) corresponded to the structural transition to pentacoordinate state (marked by triangles). For non-marked
globins the coordination state is not reported. Parasponia Hb has a transitional structure exhibiting hexacoordination in one subunit and pentacoordination in another.
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ing constant of the distal histidine, allowing the equilibrium of
pentacoordinated and hexacoordinated species and facilitating
the binding of ligands. This weak hexacoordination causes an ex-
tremely high avidity to oxygen [5]. The dissociation constant of
oxygen is in the nanomolar range and it follows from the rapid
oxygen binding resulting in protein conformational changes that
prevent fast dissociation from the heme site. Upon ligand binding
the distal histidine moves away from the iron atom resulting in
an overall more stable conformation [20]. This allows a very tight,
slowly reversible binding of O2, which is optimal for oxygen-
dependent NO scavenging under near-anaerobic conditions – a
well-described function for nsHb [24]. This function, however,
cannot be efficient without an associated reductase that converts
the ferric form of Hb; arising from the reaction with NO, back to
the ferrous form [25]. Following Hb binding of O2, steric interac-
tions encourage the reaction to form nitrate [26]. Structurally the
non-symbiotic class 1 hemoglobins are protein dimers consisting
of two identical subunits and they contain one or two cysteine res-
idues per monomer.

Class 1 hemoglobins are characterized by an increased rate of
Fe3+ reduction which is most probably mediated by a cysteine
residue. This cysteine can form a reversible covalent bond between
two monomers as shown by mass spectrometric analysis and, in
addition to its structural role, also prevents the molecule from
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autoxidation [27]. While the direct reduction of heme iron can be
facilitated by ascorbate, the additional mechanism mediating this
reduction and keeping the molecule in the ferrous state involves
a cysteine residue and controlled by sulfhydryl reagents such as
reduced glutathione [28].

The structural properties of class 1 hemoglobins allow them to
serve as soluble electron transport proteins in the enzymatic sys-
tem scavenging nitric oxide (NO) produced in low oxygen condi-
tions primarily via reduction of nitrite in plants [29] (Fig. 3).
During oxygenation of nitric oxide to nitrate, oxidized ferric hemo-
globin is formed (methemoglobin), which can be reduced by an
associated reductase. In line with the effectiveness of ascorbate
as a reducing agent for ferric class 1 Hb, the cytosolic monodehy-
droascorbate reductase has been shown to act as an effective facil-
itator of the NO scavenging reaction [25]. Functionally, in terms of
participation in electron transport, class 1 hemoglobins resemble
cytochromes more than other classes hemoglobins, the main dis-
tinction of class 1 hemoglobins from cytochromes being their sol-
ubility, compared to cytochromes anchored to membranes.

NO is produced at high levels during the hypoxic conditions and
class 1 nsHbs are able to scavenge it thus reducing the NO levels.
By doing so class1 nHbs are involved in redox balance in hypoxic
conditions and contributes to the flooding tolerance by increasing
NADH recycling. By using spin trap techniques, Dordas et al. [29]
showed that NO accumulation in alfalfa root cultures reached
120 nmol g�1 of fresh weight after 24 h incubation being at least
1.5 times higher in the hemoglobin down-regulating line, while
in aerobic conditions, NO accumulation was at least two orders
of magnitude lower. Class 1 hemoglobins are not only induced
under hypoxia but also by high nitrite or nitrate concentrations
that lead to the increased NO production [30,31]. In Arabidopsis
seeds, Hb1 overexpression resulted in low levels of endogenous
NO, in maintenance of a high energy status, and in higher fresh
weight [32]. A coordinated spatiotemporal regulation of hemoglo-
bin and nitrate reductase has been shown in maize roots in re-
sponse to nitrate fertilization [31].

Oxygenated class 1 hemoglobins reacting with NO to produce
nitrate represent the main mechanism by which NO is scavenged
in plants [25]. While other hemoglobins have much higher dissoci-
Fig. 3. Scavenging of nitric oxide (NO) by class 1 hemoglobin. During this reaction,
NO is converted to nitrate (NO3

-) by the oxygenated ferrous (Fe2+) hemoglobin (Hb),
which turns to the MetHb (ferric, Fe3+) form. The latter can be reduced by a
corresponding reductase (MetHbR) and oxygenated again. Nitrate is converted to
nitrite (NO2

-) by nitrate reductase, while nitrite can form NO in reactions of
hemeproteins and other redox systems possessing nitrite: NO reductase (NiNOR)
activity.
ation constants for oxygen and can be used for oxygen transport or
storage, class 1 hemoglobins induced in plants under hypoxia, bind
oxygen very tightly (Kd � 2 nM). As a result they can effectively
scavenge NO at oxygen levels far below the saturation of cyto-
chrome c oxidase (Km � 150 nM), while the reverse reaction of pro-
duction of NO from nitrite by these hemoglobins can take place
only at concentrations of oxygen below nanomolar [33], which
likely cannot be reached even in oxygen-depleted tissues. The
mechanism of NO scavenging involving class 1 hemoglobin results
in a formation of a non-toxic product (nitrate), is operative at ex-
tremely low oxygen concentrations, and represents a critical step
in plant survival under hypoxia and most likely other stress scenar-
ios where high concentrations of NO are produced [34].

4.2. Evolution of class 1 hemoglobins towards symbiosis

The identification of an NO activated oxygen scavenging func-
tion of hemoglobin in the parasitic nematode Ascaris lumbricoides
led to the suggestion that the oxygen transporting and storing
function of animal hemoglobins evolved from a primordial NO
detoxification function [35]. A similar evolutionary transition has
happened independently in plants, where hemoglobins with a
NO catalyzing function evolved into symbiotic hemoglobins with
a primary function in oxygen binding and storage. In the class 1
group of hemoglobins examples of evolution toward symbiosis,
although not as widespread as in the class 2 group, are also
observed. These are recent emergences compared to legHbs at
200 million years ago and as a result legHbs share only �40% se-
quence identity with non-symbiotic class 2 Hbs [36]. This evolu-
tionary tendency is observed in the family of Cannabaceae in two
genera, Trema and Parasponia [36,37]. In fact, the hemoglobin from
Trema tomentosa was the first non-symbiotic hemoglobin discov-
ered in plants in 1980s [16] with the class 1 hemoglobin from bar-
ley characterized only a few years later [17].

Trema hemoglobin is characterized by a high oxygen affinity
and slow oxygen dissociation rate common for class 1 hemoglo-
bins. The symbiotic hemoglobin from Parasponia andersonii, which
can form rhizobial symbioses, shares 93% amino acid identity to
Trema hemoglobin, indicating a recent divergence, but has charac-
teristics common to oxygen transport hemoglobins in having a
pentacoordinate ferrous heme iron, moderate oxygen affinity,
and a relatively rapid oxygen dissociation rate constant [37].
Unlike the evolution of class 2 nsHbs to legHbs (both monomeric
proteins), which related to an increase of O2 affinity and an in-
crease of O2 dissociation constant, the emergence of Parasponia
Hb resulted in lower O2 affinity, faster O2 dissociation, and tight
dimeric structure [37]. This dimeric structure confers a 50 fold
greater oxygen affinity than the Trema Hb. In the ferric state, Para-
sponia Hb acquires an unusual dissymmetric structure with a
hexacoordinate heme in one subunit and pentacoordinate in an-
other [37]. The evolution towards symbiosis is also observed in
Myrica gale, the plant from the related but distant Myricaceae fam-
ily that exhibits actinorhizal symbiosis. This plant expresses the
hemoglobin evolved from the non-symbiotic class 1 precursor
and interestingly is capable of playing both symbiotic and non-
symbiotic roles [38].

The observed characteristics for Trema and Parasponia hemoglo-
bins demonstrate distinct mechanisms for convergent evolution of
oxygen transport in different phylogenetic classes of plant hemo-
globins. This means that the evolution towards symbiosis occurred
both in class 1 and 2 hemoglobins, and that in plants pentacoordi-
nate hemoglobins evolved always from the hexacoordinate [39].
This occurred in opposite to the observed evolutionary trend in
which hexacoordinate hemoglobins evolved from pentacoordinate.
The cloning of a hemoglobin gene from the ancient legume
Chamaecrista fasciculata similarly suggested that the transition
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from nsHb to legHb involved transition from hexa- to pentacoordi-
nation and compaction of protein structure [40].

The cloning of a moss nsHbs from mosses Ceratodon purpureus
and Physcomitrella patens suggests that class 1 and 2 nsHb evolved
from a hexacoordinate nsHb with low O2 dissociation rate [41]. The
hemoglobins from mosses (bryophytes) and other lower higher
plants (such as Selaginella) have a similarity to class 1 hemoglo-
bins but they are more ancient and diverged early after separation
of class 1 and 2 hemoglobins. They can be defined as class 0 hemo-
globins. All this suggests that various plant hemoglobins are good
‘molecular fossils’ representing different steps in the evolution
from primordial hexacoordinate hemoglobins with alternate func-
tions (such as NO scavenging) to pentacoordinate symbiotic hemo-
globins optimized for oxygen storage and transport.
5. Class 2 plant hemoglobins

5.1. Non-symbiotic class 2 hemoglobins

In contrast to class 1 nsHbs, the class 2 nsHbs are usually not
induced under hypoxic conditions [42] but their overexpression
can promote the survival under hypoxia [39]. Class 2 Hbs are char-
acterized by a tighter hexacoordination than class 1 nsHbs and
thus they have lower oxygen affinities (in the order of
100–200 nM). This makes them less efficient in NO scavenging
but increases the possibility of functions related to sensing low lev-
els of oxygen and to oxygen storage and diffusion [39]. The oxygen-
binding characteristics of class 2 hemoglobins are comparable to
leghemoglobin, and an affinity to oxygen resembles the Km of cyto-
chrome oxidase, which means that their role in facilitating oxygen
diffusion is quite likely [12,13]. While class 1 Hbs possess two
docking sites for small ligands permitting NO and O2 to react, the
only one site can be occupied for class 2 Hbs also making NO diox-
ygenase reaction for these Hbs less favorable [26].

Overexpression of class 2 hemoglobin in transgenic Arabidopsis
(AtHb2) plants led to a 40% increase in the total fatty acid content
of developing and mature seeds and to the elevated unsaturation/
saturation index of total seed lipids [12]. The increase in fatty acid
content was mainly due to a stimulation of the rate of triacylglyc-
erol synthesis, which was attributable to a 3-fold higher energy
state and a 2-fold higher sucrose content of the seeds. Under low
external oxygen, AtHb2 overexpression maintained an up to 5-fold
higher energy state and prevented fermentation. These results sug-
gested that a specific function of class 2 hemoglobin is in seed oil
production and in promoting the accumulation of polyunsaturated
fatty acids by facilitating oxygen supply in developing seeds. A
similar function related to a facilitated oxygen supply can be
attributed not only to seeds but also to other plant tissues express-
ing class 2 hemoglobin.

5.2. Leghemoglobins

LegHb was the first plant hemoglobin discovered. It was
described by Kubo [43] in 1939 and for a half of century remained
the only known plant hemoglobin. It is present in root nodules of
the nitrogen-fixing plants and plays an important role in symbi-
otic nitrogen fixation. LegHb has similar structures to mammalian
myoglobins which are involved in oxygen storage. LegHb pro-
motes oxygen diffusion from atmosphere to Rhizobium bacteria
which are engaged in nitrogen fixation inside the nodules. Actual
nitrogen fixation within nodules is catalyzed by nitrogenase
(N2 + 8H+ + 8e� + 16 ATP ? 2 NH3 + H2 + 16 ADP + 16 Pi) which
must function at low oxygen tensions because oxygen represents
an alternative electron acceptor. Therefore LegHb quenches the
oxygen and delivers it to Rhizobium in low concentration and by
doing so it fulfills a vital role in nitrogen fixation in leguminous
plants and thus aids in improving soil fertility [44]. During symbi-
osis, the expression of non-symbiotic hemoglobins of all three
classes is also enhanced pointing out complementary role of all
types of hemoglobins and indicating that they are also required
for symbiosis [45]. This may be related to fine adjustments of con-
centrations of oxygen and NO in symbiotic nodules to achieve
high metabolic rates of nitrogen fixation.
6. Class 3 plant hemoglobins (truncated)

The class 3 plant Hb was originally described by Watts et al. [14].
They showed that this protein in Arabidopsis thaliana exhibits unu-
sual concentration-independent binding of O2 and CO. The protein,
which is pentacoordinate in oxygenated state, forms a transient
hexacoordinate structure after reduction and deoxygenation, which
slowly converts to a five-coordinate structure. In A. thaliana, the
truncated Hb is expressed throughout the plant but responds to
none of the treatments that induce plant 3-on-3 (class 1 and 2)
Hbs. It has been suggested that because of a lower O2 affinity the
truncated Hb in Arabidopsis might be an O2 transport protein with
a moderate O2 affinity (50% saturation at 1500 nM, i.e., at 10 times
higher O2 level than for Hb2 and few hundred times higher than
for Hb1 [14]). The deoxygenation of the truncated Hb leaves the pro-
tein in a hexacoordinate state with an endogenous (i.e., amino acid
side-chain) or uncharacterized exogenous ligand (i.e., not O2, CO, or
NO) bound to the sixth bond of the heme iron molecule. This state is
transitory, reverting to a five-coordinate form in �20 min. This ex-
tremely slow conversion has not been observed with any other Hb.

The trHb group is maintained through evolutionary processes
so presumably contributes towards plant fitness but their role
remains obscure. In bacteria, downregulation of a truncated Hb
results in a sensitivity to high solution oxygen pressure, to H2O2,
and to a nitrosating agent [46]. The Arabidopsis trHb is expressed
both in roots and shoots, but is suppressed rather than induced, as
in other classes, when oxygen concentrations go down [14]. This
corresponds to a low O2 affinity of the trHbs and argues against
their role in responses to hypoxia. Interestingly, in Medicago
truncatula both trHbs (MtTrHb1 and MtTrHb2) are induced in nod-
ules and upon arbuscular mycorrhizal associations [47]. MtTrHb1
expression in root nodules matched that of sHbs whilst MtTrHb2
is active in root nodule base and vascular tissues and mycorrhizal
roots. Based on these patterns it has been proposed that the func-
tion of these truncated Hbs involves the suppression of defence
processes against symbioses and may be based on NO scavenging.
The same role has been suggested for the truncated hemoglobin
found in the Frankia-induced nodules of the actinorhizal plant
Datisca glomerata [48]. Clearly, this function needs to be substanti-
ated through (for example) mutational analysis as it is unclear why
trHb rather than nsHb should be exploited in this role.
7. Conclusion

Plant hemoglobins are a wide group of proteins containing a
heme structure. They are involved in the maintenance of redox bal-
ance and the energy state in cells. Their functions are achieved by
different mechanisms, such as facilitation of oxygen delivery,
transport and buffering of oxygen levels (legHbs evolved from class
2 nsHbs), nitric oxide scavenging (class 1 Hbs), and by other yet
uncharacterized ways (trHbs). Evolutionary plant hemoglobins be-
long to three different clades (class 1, class 2 and truncated), while
by their physical and functional properties they belong either to
hexacoordinate non-symbiotic or pentacoordinate symbiotic
groups. Since the main functions of plant hemoglobins are struc-
turally determined by their affinities and ligand-binding properties
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to O2 and NO, they are important players on the crossroad between
these two gases, and their functions are either more related to NO
turnover (class 1) or to O2 delivery and buffering (class 2). Yet
these functions have species-specific and stress-related features
that have to be established in each particular case, and there are
significant gaps in understanding functional roles of plant Hbs, par-
ticularly this concerns the truncated (class 3) Hbs and class 2
nsHbs. Much more research is required on hemoglobin function
but, given the current state of knowledge, one conclusion of this
overview is that the manipulation of plant hemoglobins via genetic
modification or through allele screens in plant germplasm popula-
tion could improve plant resistance to multiple stresses and also
increase sustainable plant productivity under changing environ-
mental conditions.
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