145 research outputs found

    Towards Deadline Guaranteed Cloud Storage Services

    Get PDF
    More and more organizations move their data and workload to commercial cloud storage systems. However, the multiplexing and sharing of the resources in a cloud storage system present unpredictable data access latency to tenants, which may make online data-intensive applications unable to satisfy their deadline requirements. Thus, it is important for cloud storage systems to provide deadline guaranteed services. In this paper, to meet a current form of service level objective (SLO) that constrains the percentage of each tenant\u27s data access requests failing to meet its required deadline below a given threshold, we build a mathematical model to derive the upper bound of acceptable request arrival rate on each server. We then propose a Deadline Guaranteed storage service (called DGCloud) that incorporates three algorithms. Its deadline-aware load balancing scheme redirects requests and creates replicas to release the excess load of each server beyond the derived upper bound. Its workload consolidation algorithm tries to maximally reduce servers while still satisfying the SLO to maximize the resource utilization. Its data placement optimization algorithm re-schedules the data placement to minimize the transmission cost of data replication. Our trace-driven experiments in simulation and Amazon EC2 show the higher performance of DGCloud compared with previous methods in terms of deadline guarantees and system resource utilization, and the effectiveness of its individual algorithms

    FCS-HGNN: Flexible Multi-type Community Search in Heterogeneous Information Networks

    Full text link
    Community Search (CS), a crucial task in network science, has attracted considerable interest owing to its prowess in unveiling personalized communities, thereby finding applications across diverse domains. Existing research primarily focuses on traditional homogeneous networks, which cannot be directly applied to heterogeneous information networks (HINs). However, existing research also has some limitations. For instance, either they solely focus on single-type or multi-type community search, which severely lacking flexibility, or they require users to specify meta-paths or predefined community structures, which poses significant challenges for users who are unfamiliar with community search and HINs. In this paper, we propose an innovative method, FCS-HGNN, that can flexibly identify either single-type or multi-type communities in HINs based on user preferences. We propose the heterogeneous information transformer to handle node heterogeneity, and the edge-semantic attention mechanism to address edge heterogeneity. This not only considers the varying contributions of edges when identifying different communities, but also expertly circumvents the challenges presented by meta-paths, thereby elegantly unifying the single-type and multi-type community search problems. Moreover, to enhance the applicability on large-scale graphs, we propose the neighbor sampling and depth-based heuristic search strategies, resulting in LS-FCS-HGNN. This algorithm significantly improves training and query efficiency while maintaining outstanding community effectiveness. We conducted extensive experiments on five real-world large-scale HINs, and the results demonstrated that the effectiveness and efficiency of our proposed method, which significantly outperforms state-of-the-art methods.Comment: 13 page

    Expression of an Arabidopsis Sodium/Proton Antiporter Gene

    Get PDF
    Abstract Salinity is a major environmental stress that affects agricultural productivity worldwide. One approach to improving salt tolerance in crops is through high expression of the Arabidopsis gene AtNHX1, which encodes a vacuolar sodium/proton antiporter that sequesters excess sodium ion into the large intracellular vacuole. Sequestering cytosolic sodium into the vacuoles of plant cells leads to a low level of sodium in cytosol, which minimizes the sodium toxicity and injury to important enzymes in cytosol. In the meantime, the accumulation of sodium in vacuoles restores the correct osmolarity to the intracellular milieu, which favors water uptake by plant root cells and improves water retention in tissues under soils that are high in salt. To improve the yield and quality of peanut under high salt conditions, AtNHX1 was introduced into peanut plants through Agrobacterium-mediated transformation. The AtNHX1-expressing peanut plants displayed increased tolerance of salt at levels up to 150 mM NaCl. When compared to wild-type plants, AtNHX1-expressing peanut plants suffered less damage, produced more biomass, contained more chlorophyll, and maintained higher photosynthetic rates under salt conditions. These data indicate that AtNHX1 can be used to enhance salt tolerance in peanut

    Achieving abiotic stress tolerance in plants through antioxidative defense mechanisms

    Get PDF
    Climate change has increased the overall impact of abiotic stress conditions such as drought, salinity, and extreme temperatures on plants. Abiotic stress adversely affects the growth, development, crop yield, and productivity of plants. When plants are subjected to various environmental stress conditions, the balance between the production of reactive oxygen species and its detoxification through antioxidant mechanisms is disturbed. The extent of disturbance depends on the severity, intensity, and duration of abiotic stress. The equilibrium between the production and elimination of reactive oxygen species is maintained due to both enzymatic and non-enzymatic antioxidative defense mechanisms. Non-enzymatic antioxidants include both lipid-soluble (α-tocopherol and β-carotene) and water-soluble (glutathione, ascorbate, etc.) antioxidants. Ascorbate peroxidase (APX), superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR) are major enzymatic antioxidants that are essential for ROS homeostasis. In this review, we intend to discuss various antioxidative defense approaches used to improve abiotic stress tolerance in plants and the mechanism of action of the genes or enzymes involved

    Thermal decomposition and gasification of biomass pyrolysis gases using a hot bed of waste derived pyrolysis char

    Get PDF
    Chars produced from the pyrolysis of different waste materials have been investigated in terms of their use as a catalyst for the catalytic cracking of biomass pyrolysis gases during the two-stage pyrolysis-gasification of biomass. The chars were produced from the pyrolysis of waste tyres, refused derived fuel and biomass in the form of date stones. The results showed that the hydrocarbon tar yields decreased significantly with all the char materials used in comparison to the non-char catalytic experiments. For example, at a cracking temperature of 800 °C, the total product hydrocarbon tar yield decreased by 70% with tyre char, 50% with RDF char and 9% with biomass date stones char compared to that without char. There was a consequent increase in total gas yield. Analysis of the tar composition showed that the content of phenolic compounds decreased and polycyclic aromatic hydrocarbons increased in the product tar at higher char temperatures

    Clp protease and OR directly control the proteostasis of phytoene synthase, the crucial enzyme for carotenoid biosynthesis in Arabidopsis

    Get PDF
    Ajuts: This work was supported by Agriculture and Food Research Initiative competitive award no. 2016-67013-24612 from the USDA National Institute of Food and Agriculture and by the HarvestPlus research consortium (2014H6320.FRE)Phytoene synthase (PSY) is the crucial plastidial enzymein the carotenoid biosynthetic pathway. However, its post-translational regulation remains elusive. Likewise, Clp protease constitutes a central part of the plastid protease network, but its substrates for degradation are not well known. In this study, we report that PSY is a substrate of the Clp protease. PSY was uncovered to physically interact with various Clp protease subunits (i.e., ClpS1, ClpC1, and ClpD). High levels of PSY and several other carotenogenic enzyme proteins overaccumulate in the clpc1, clpp4, and clpr1-2 mutants. The overaccumulated PSY was found to be partially enzymatically active. Impairment of Clp activity in clpc1 results in a reduced rate of PSY protein turnover, further supporting the role of Clp protease in degrading PSY protein.On the other hand, the ORANGE (OR) protein, a major post-translational regulator of PSY with holdase chaperone activity, enhances PSY protein stability and increases the enzymatically active proportion of PSY in clpc1, counterbalancing Clp-mediated proteolysis in maintaining PSY proteinhomeostasis. Collectively, these findings provide novel insights into the quality control of plastid-localized proteins and establish a hitherto unidentified post-translational regulatory mechanism of carotenogenic enzymes in modulating carotenoid biosynthesis in plants

    Minimum-Cost Cloud Storage Service Across Multiple Cloud Providers

    No full text

    iASK: A Distributed Q&A System Incorporating Social Community and Global Collective Intelligence

    No full text
    corecore