978 research outputs found

    Quantum spin Hall effect induced by nonmagnetic and magnetic staggered potentials

    Get PDF
    We conducted a comparative study of the quantum spin Hall (QSH) effects induced by nonmagnetic and magnetic staggered potentials, respectively, and show that they have the same effect in driving the topological phase transition. The result implies that both time-reversal (T) preserving and breaking systems can host a QSH effect. We also investigate the stability of the resulting QSH effect for disorder and find that, for T invariant systems, the edge states are always robust while those of the T breaking system are also robust if there is additional symmetry in the system. © 2011 American Physical Society.published_or_final_versio

    Dimensional evolution between one- and two-dimensional topological phases

    Get PDF
    published_or_final_versio

    Cloning and molecular characterization of a copper chaperone gene (HbCCH1) from Hevea brasiliensis

    Get PDF
    The cDNA encoding a copper chaperone, designated as HbCCH1, was isolated from Hevea brasiliensis. HbCC1 was 589 bp long containing a 261 bp open reading frame encoding a putative protein of 86 amino acids, flanked by a 103 bp 5’UTR and a 225 bp 3’UTR. The predicted molecular mass of HbCCH1 was 9.2 kDa, with an isoelectric point (pI) of 5.13. The HbCCH1 share the conserved N-terminal metalbinding domain (MXCXXC) and a lysine-rich C-terminus. Reverse transcriptase polymerase chain reaction (RT-PCR) analysis revealed that HbCCH1 was constitutively expressed in all the tested tissues. HbCCH1 transcripts were accumulated at relatively low levels in the flower, bud and leaves, while HbCCH1 transcripts were accumulated at relatively high levels in the latex. The transcription of HbCCH1 in the latex was induced by jasmonate.Key words: Copper chaperone, Hevea brasiliensis, latex

    A new multiple regression approach for the construction of genetic regulatory networks

    Get PDF
    Objective: Re-construction of a genetic regulatory network from a given time-series gene expression data is an important research topic in systems biology. One of the main difficulties in building a genetic regulatory network lies in the fact that practical data set has a huge number of genes vs. a small number of sampling time points. In this paper, we propose a new linear regression model that may overcome this difficulty for uncovering the regulatory relationship in a genetic network. Methods: The proposed multiple regression model makes use of the scale-free property of a real biological network. In particular, a filter is constructed by using this scale-free property and some appropriate statistical tests to remove redundant interactions among the genes. A model is then constructed by minimizing the gap between the observed and the predicted data. Results: Numerical examples based on yeast gene expression data are given to demonstrate that the proposed model fits the practical data very well. Some interesting properties of the genes and the underlying network are also observed. Conclusions: In conclusion, we propose a new multiple regression model based on the scale-free property of real biological network for genetic regulatory network inference. Numerical results using yeast cell cycle gene expression dataset show the effectiveness of our method. We expect that the proposed method can be widely used for genetic network inference using high-throughput gene expression data from various species for systems biology discovery. © 2009 Elsevier B.V.postprin

    New proposed conceptual mathematical models for biomass viability and membrane fouling of membrane bioreactor

    Full text link
    The production and accumulation of soluble microbial products (SMP), extracellular polymeric substances (EPS) and colloidal inert compounds within a membrane bioreactor (MBR) may greatly affect the biomass viability and subsequently the permeability of the membrane. This paper aims at presenting new mathematical models of biomass viability and membrane fouling that has been conceptually developed through establishing links between these biomass parameters and operating parameters of the MBR. The proposed models can be used to predict the biomass viability and membrane fouling at any state of operation of MBR. Meanwhile, easily measurable parameters of the proposed model can also serve to estimate SMP/EPS concentration in the supernatant of MBR without the tedious and expensive measurement. © 2013 Elsevier Ltd

    Crystal structure and properties of electroless silver plating on polyester fabric

    Get PDF
    2009-2010 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Elastoplastic phase field model for microstructure evolution

    Get PDF
    2005-2006 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Enhancement of anammox performance in a novel non-woven fabric membrane bioreactor (nMBR)

    Full text link
    © 2015 The Royal Society of Chemistry. To reduce operating costs and membrane fouling of conventional membrane bioreactors (cMBR), a novel MBR using a non-woven fabric membrane (nMBR) was constructed and the performance of the two MBRs was compared for anaerobic ammonium oxidation (anammox) cultivation. The results showed that the start-up period for the nMBR (44 days) was notably shorter than that for the cMBR (56 days), meanwhile the nMBR achieved a 2-times higher nitrogen removal rate (231.5 mg N per L per d) compared to the cMBR (112.3 mg N per L per d). Illumina MiSeq sequencing showed that Candidatus Kuenenia and Candidatus Jettenia were the main distinguished anammox bacteria. FISH analysis revealed that anammox bacteria predominated in both reactors, especially in the nMBR (58%) corresponding to a qPCR analysis of 1.07 × 109 copies per mL (day 120). N2O emission analysis confirmed the advantage of the nMBR in N2O reduction to reduce the influence of greenhouse gas emission while treating identical nitrogen. These results clearly demonstrated that nMBRs could be a prospective choice for anammox start-up and performance enhancement

    The giant electrocaloric effect and high effective cooling power near room temperature for BaTiO₃ thick film

    Get PDF
    Author name used in this publication: Guang-Ping Zheng2011-2012 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Dominant features in three-dimensional turbulence structure: comparison of non-uniform accelerating and decelerating flows

    Get PDF
    The results are presented from an experimental study to investigate three-dimensional turbulence structure profiles, including turbulence intensity and Reynolds stress, of different non-uniform open channel flows over smooth bed in subcritical flow regime. In the analysis, the uniform flow profiles have been used to compare with those of the non-uniform flows to investigate their time-averaged spatial flow turbulence structure characteristics. The measured non-uniform velocity profiles are used to verify the von Karman constant κ and to estimate sets of log-law integration constant B r and wake parameter П, where their findings are also compared with values from previous studies. From κ, B r and П findings, it has been found that the log-wake law can sufficiently represent the non-uniform flow in its non-modified form, and all κ, B r and П follow universal rules for different bed roughness conditions. The non-uniform flow experiments also show that both the turbulence intensity and Reynolds stress are governed well by exponential pressure gradient parameter β equations. Their exponential constants are described by quadratic functions in the investigated β range. Through this experimental study, it has been observed that the decelerating flow shows higher empirical constants, in both the turbulence intensity and Reynolds stress compared to the accelerating flow. The decelerating flow also has stronger dominance to determine the flow non-uniformity, because it presents higher Reynolds stress profile than uniform flow, whereas the accelerating flow does not
    corecore