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We conducted a comparative study of the quantum spin Hall (QSH) effects induced by nonmagnetic and
magnetic staggered potentials, respectively, and show that they have the same effect in driving the topological
phase transition. The result implies that both time-reversal (T ) preserving and breaking systems can host a QSH
effect. We also investigate the stability of the resulting QSH effect for disorder and find that, for T invariant
systems, the edge states are always robust while those of the T breaking system are also robust if there is
additional symmetry in the system.
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I. INTRODUCTION

Recently, the field of the topological insulator (TI) has at-
tracted a great deal of interest, due to its exotic physical proper-
ties as well as potential applications, such as spintronics, quan-
tum computing, etc.1–3 Many materials have been predicted
and discovered to show TI phases [including HgTe/CdTe
quantum wells (QWs),4,5 bismuth antimony alloys6,7 Bi2Se3,
Bi2Te3, and Sb2Te3,8–11 Heusler compounds,12,13 Tl-based
ternary chalcogenide series,14,15 etc.]. The findings of the real
materials not only provide a platform to test the predictions of
many unusual phenomena exhibited by TI,16–19 but also inspire
more theoretical studies on TI.

The study of TI begins with the theoretical proposal of
quantum spin Hall (QSH) effect in graphene by Kane and
Mele.20,21 They expected that spin-orbit coupling will convert
graphene from an ideal two-dimensional (2D) semimetallic
state to a QSH insulator. The resulting QSH insulator is
topologically distinct from a band insulator, so it is referred
to as TI. However, the calculations have suggested that the
spin-orbit coupling in graphene is too small to reveal the QSH
effect experimentally.22 Remarkably, in 2007, the QSH effect
was realized in HgTe/CdTe QWs following the theoretical
suggestion of Bernevig, Hughes, and Zhang.4,5 Later, although
many studies have been carried out for identifying new
physical systems that will possess topological nontrivial
phases, until now, the 2D TI was only found experimentally in
HgTe/CdTe QWs. In the low-energy effective theory, the QSH
effect can be understood from the Dirac Hamiltonian with
masses.23,24 The relative signs of the masses at the Dirac points
determine the phases of the system. Alternately, it can also
be understood from band inversion, which is the mechanism
of the TI phase in HgTe/CdTe QWs. The two methods are
equivalent since the occurrence of band inversion corresponds
to changing the sign of one Dirac mass and causes a topological
phase transition, which cannot happen without closing the gap.

Spin-orbit coupling is a necessary condition for the exis-
tence of TI. Its role is to induce a gap in the Dirac dispersion
and to ensure that the gap is finite everywhere in the Brillouin
zone (BZ). It also has been known that nonmagnetic and
magnetic staggered potentials can perturb the Dirac dispersion
and can induce a gap. Such terms can be obtained by the
proximity effect to the corresponding orders [charge density
wave (CDW) and antiferromagnetism (AF)].25 When these

terms coexist, their interplay will determine the phase of the
system. In this paper, we study the interplay of these terms.
We start from a trivial insulator with spin-orbit coupling and
introduce nonmagnetic and magnetic staggered potentials with
checkerboard and stripe patterns into the system. We find that,
when the strength of the potential is strong enough, a band
inversion occurs, and the system shows QSH effect. Especially,
the QSH effect induced by magnetic staggered potential breaks
T symmetry, in contrast to the previously studied QSH effect.

II. THE MODEL FOR HgTe/CdTe QWs

To be concrete, we study a model describing HgTe/CdTe
QWs. It resides on a square lattice with four orbit states |s, ↑〉,
|px + ipy, ↑〉, |s, ↓〉, and |(px − ipy), ↓〉 (↑ ,↓ denote the
electron’s spin) on each site. In the momentum space, the
Hamiltonian is written as

H0(k) = [4D − 2D(cos kx + cos ky)]I

+ [M + 4B − 2B(cos kx + cos ky)]σz

+ 2A sin kxsz ⊗ σx + 2A sin kyσy. (1)

Here, �σ and �s are Pauli matrices representing the orbit and
the electron’s spin, and I is the identity matrix. A, B, D,
and M are four independent parameters. The tight-binding
Hamiltonian can be directly obtained by a lattice regulation
of the effective low-energy Hamiltonian describing the
physics of HgTe/CdTe QWs. We can also view it as a simple
toy model conveniently describing both topological and
ordinary phases of noninteracting electrons in 2D. The energy
spectrum of H0(k) has two double degenerate branches Ek =
(4D − Dk) ±

√
(2A sin kx)2 + (2A sin ky)2 + (M̃ − Bk)2,

where M̃ = (M + 4B), Bk = 2B(cos kx + cos ky) and
Dk = 2D(cos kx + cos ky). At half-filling, depending on
the values of M and B, the system can be QSH or a trivial
insulator.

The system defined by Eq. (1) is invariant under T and
spatial inversion. Since the inversion operator P operating
on p-type orbit generates a minus sign, the inversion operator
writesP = I ⊗ σz. Thus, the signs of M̃ − Bk at the four time-
reversal invariant momenta (TRIM) determine the phase of the
system, i.e., M(M + 4B)2(M + 8B) < 0 (>0) for the QSH
(trivial) insulator.26,27 In this paper, we restrict our calculations
in the parameter range describing HgTe/CdTe QWs, where
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FIG. 1. (Color online) (a) The staggered potential with checkerboard pattern, (c) stripe pattern, and [(b) and (d)] the band evolvements at
TRIM with the potential strength corresponding to the patterns in (a) and (c), respectively. The open and filled circles on lattice sites in (a) and
(c) represent on-site potentials with equal values but opposite signs. The new lattice vectors and new BZs are shown in (a) and (c) and the insets
of (b) and (d). The blue (top) curve in (d) is a band evolving at other momenta that will determine the gap size at large potential strength. The
range with vertical dashed lines in (b) and (d) marks the gap of the induced topological phase. The parameters are fixed for all calculations in
this paper to be A = 36.45 meV, B = 27.44 meV, D = 20.48 meV, and M = 1 meV.

B > |M| > 0. Since the TRIM �1 (k = [0,0] in the BZ, see
the inset of (b) in Fig. 1) dominates the physics in the range, the
Hamiltonian describes the QSH effect for M < 0 and a trivial
insulator for M > 0. Experimentally, the gap parameter M can
be continuously tuned from a positive value for thin QWs with
thickness d < dc to a negative value for thick QWs with d > dc

(dc is a critical thickness and equals 6.3 nm for HgTe/CdTe
QWs).4,5 The gap parameter M in Eq. (1) represents an on-site
potential, which has a different sign for s-type and p-type
orbits. When changing its sign, one of the occupied bands
changes from p type (M > 0) to s type (M < 0). Since the
two kind of orbits have different parities, a band inversion will
induce a topological phase transition.

III. NONMAGNETIC AND sz-CHANNEL MAGNETIC
STAGGERED POTENTIALS

To drive the system into QSH phase, a band inversion is
needed. So it is interesting to seek ways other than tuning

the gap parameter M to generate the band inversion. Later,
we fix M > 0 when the system is a trivial insulator and find
ways to inverse the bands at TRIM �1. A natural thought
is to enlarge the Hamiltonian, which makes itv possible to
add more terms to it. First, we consider putting the system
on a checkerboard square lattice (CSL), which can introduce
alternating potential with a checkerboard pattern. In this case,
the unit cell is doubled. The Hamiltonian H0(k) is enlarged to
8 × 8 and becomes

H1(k) = 4DI − 2D(cos kx + cos ky)τx

+ (M + 4B)σz − 2B(cos kx + cos ky)τx ⊗ σz

+ 2A sin kxτx ⊗ sz ⊗ σx + 2A sin kyτx ⊗ σy. (2)

Here, �τ is the Pauli matrix describing the two sublattices. We
have been able to identify two interesting on-site terms: (i)
a nonmagnetic staggered potential (or CDW potential) V1τz;
(ii) a magnetic staggered potential (or AF potential) V2τz ⊗
sz. (The magnetization also can lie in the plane and couples
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TABLE I. The eigenvectors for the Hamiltonian at TRIM �1 and
their parities. Here, φ1± = B̃±+Vi

4B±4D
and φ2± = B̃±−Vi

4B±4D
. The superscripts

for the values of the eigenvectors represent the corresponding position
in the eigenvectors.

No. Eigenvector (CDW) Eigenvector (AF) Parity

1 (−φ2
2−,16); (−φ4

2−,18) (−φ2
2−,16); (−φ4

1−,18) −1
2 (φ2

1−,16); (φ4
1−,18) (φ2

1−,16); (φ4
2−,18) −1

3 (φ3
2+,17); (φ1

2+,15) (φ3
1+,17); (φ1

2+,15) 1
4 (−φ3

1+,17); (−φ1
1+,15) (−φ3

2+,17); (−φ1
1+,15) 1

with the in-plane components of the electron’s spin, generating
terms, such as τz ⊗ sx or τz ⊗ sy . We will discuss these terms
later.) The former term preserves T symmetry while the latter
breaks. Including the preceding terms for Eq. (2), although we
cannot obtain the analytic forms of the energy spectrums, they
are the same for the two different cases. The system remains
gapped, and the occupied bands evolve with the strength of
Vi (i = 1,2).

At TRIM �1, the energy eigenvalues are: (1) 4D − M̃ −
B̃−; (2) 4D − M̃ + B̃−; (3) 4D + M̃ − B̃+; (4) 4D + M̃ +
B̃+, where B̃± =

√
(4D ± 4B)2 + V 2

i and each is double
degenerate. The corresponding eigenvectors and their parities
can also be obtained, which are listed in Table I. The band
evolvement with the strength Vi is shown in (b) of Fig. 1. At
half-filling and for Vi = 0, bands (1) and (2) are occupied.
Since we choose M > 0, the system is a trivial insulator.
As Vi increases, bands (2) and (3) first approach each other,
and at a critical value of Vi , the filling for the two bands
will interchange. Bands (2) and (3) consist of electrons in
the p-type and s-type orbits, respectively, and have opposite
parities. For the case with the CDW term, the band inversion
will induce a topological phase transition and will drive the
system into the QSH phase. It is interesting that the AF term
has the same effect as the CDW term. As we further increase
the strength of the potential, the system remains in QSH phase
until another band inversion occurs at another TRIM, which
happens at a potential strength greater than 100 meV. The gap
range of the resulting QSH insulator is also denoted in (b) of
Fig. 1. At small potential strength, it is determined by bands
(2) and (3) and increases with increasing potential strength.
Then, a band evolving at TRIM �3 (k = [0,π ] in the BZ,
see the inset of (b) in Fig. 1) becomes the lower restriction
of the gap and restricts its further increase. It is interesting
to note that the behavior is similar to what happens in the
topological Anderson insulator, where the phase diagram has
to be obtained by conductivity calculations since the system
has no translation symmetry in the presence of disorder.28–31

We can also put the system on a stripe square lattice (SSL),
as shown in (c) of Fig. 1. The Hamiltonian H0(k) becomes

H2(k) = (4D − 2D cos ky)I − 2D cos kxτx

+ (M + 4B − 2B cos ky)σz − 2B cos kxτx ⊗ σz

+ 2A sin kxτx ⊗ sz ⊗ σx + 2A sin kyσy. (3)

Similarly, a stripe CDW (τz) or AF term (τz ⊗ sz), which has
the same form as its counterpart on CSL, can be added to the
previous Hamiltonian. The energy spectrums for both cases
are still the same. The band evolvements with the potential

strength at TRIM are shown in (d) of Fig. 1. The CDW or AF
term on SSL can also induce a band inversion and can drive
the system into QSH phase. However, compared to the case in
the CSL, here, the band inversion occurs at a smaller potential
strength and the resulting QSH insulator has a bigger gap.

So, adding the CDW or AF term to the system can induce
a band inversion. Although they have different properties
under T transformation, they have the same effects on band
inversion. The reason is that the combined Hamiltonian at
TRIM �1 can be decoupled for each orbit and spin. Each
decoupled Hamiltonian has a 2 × 2 form and has two sub-
bands. The CDW or AF term pushes one sub-band up and the
other down, which does not depend on the sign of the potential
strength. Since the difference between CDW and AF terms is
that the AF term acts on a different spin with a different sign,
they have the same effect on changing the band structure.

The CDW term preserves T symmetry, and such systems
can be described by the Z2 topological invariant.21,32 Since
our system has inversion symmetry, the Z2 invariant can be
determined from the knowledge of the parities of the occupied
band eigenstates at the four TRIM. When the band inversion
occurs as we increase the potential strength, the value of the
Z2 invariant also changes its sign and becomes nontrivial,
indicating that the system is in QSH phase. For the case with
the AF term, the T symmetry is broken, and the Z2 topological
invariant is inapplicable. However, the spin Hall conductance
of the resulting QSH phase still shows the quantized value
e

2π
.33 So the underlying topological invariant is a spin Chern

number, which describes the quantized spin Hall conductivity.
The concept of the spin Chern number has appeared in the
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FIG. 2. (Color online) One-dimensional energy bands with a strip
geometry (shown in the inset) for (a) a checkerboard pattern and (b),
(c), and (d) a stripe pattern. In (a) and (b), the energy bands are the
same for the cases with the CDW and AF terms. (c) and (d) have
different edges with (b), and the energy bands with the CDW term
(c) are different from those with the AF term (d). A strip of width
Ny = 60 unit cell with open boundary conditions along y and infinite
along x is used with the staggered potential strength 30 meV, when
the system is in the band-inverted phase.
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recent literature, which has its definition for systems with spin
sz conservation.34 For the T invariant systems, it is equivalent
to the Z2 topological invariant.32

To further support our identification of the topological
phase, we have performed numerical diagonalization of
Hamiltonians (2) and (3) with the CDW or AF term using a
strip geometry in the range of parameters where the system is in
band-inverted phase. In accord with the foregoing arguments,
we find a pair of spin-filtered gapless states associated with
each edge traversing the gap, which is shown in Fig. 2. The
spin-filtered edge states determine the transport of charge
and spin in the gap range. For a two-terminal device, the
conductance is contributed by two conducting channels on
the edges and gets the quantized value 2e2/h. For a four-
terminal device with proper voltage on each terminal, a spin
current can be generated.20

Until now, we demonstrated the existence of the QSH
effect induced by the nonmagnetic and magnetic staggered
potentials in a trivial insulator with a spin-orbit coupling. In
the following, we study the stability of the resulting QSH effect
for nonmagnetic disorder. The Hamiltonian we are considering
can be decoupled for spin-up and spin-down electrons, and
each describes quantum anomalous Hall (QAH) effect. The
resulting QSH effect can be understood as two copies of the
QAH effects. For the CDW case, the two copies for spin-up
and spin-down electrons are related by T , and the QSH effect
is immune to nonmagnetic disorder. However, for the AF case,
although T symmetry is broken, the system preserves the

combined symmetry of T and a primitive lattice translation,
which has been studied in three dimensions, and the AF
topological insulator is predicted.35 So, the two copies for
spin-up and spin-down electrons in the presence of the AF
term are related by the combined transformation. If there is
nonmagnetic disorder in the system, the combined symmetry
will be broken, and the two copies will behave separately.
But we still expect the combined system will be robust for
disorder because each copy is in the QAH phase and robust for
disorder.

To support the earlier statement, we employ the recursive
Green’s function method to evaluate the conductance G

of two-terminal devices (see the insets of Fig. 2) using
Landauer-Büttiker formalism. Figure 3 shows the results of
such calculations in the space of parameters (EF ,U0), where
U0 is disorder strength and the disorder is described by a
random on-site potential uniformly distributed in the range
(−U0/2,U0/2). We only consider a single disorder realization
at each point of the (EF ,U0) phase diagram. Nevertheless,
this turns out to be sufficient for studying the stability
of the edge states. The reason is that, if the edge states
are robust for disorder, there should be a region showing
quantized conductance G = 2e2/h in the phase diagram, and
conductance G in the region shows no observable fluctuations
but fluctuates significantly elsewhere. The plots in Fig. 3
display conductance G in a fashion that is designed to amplify
the effect of fluctuations. In (a), (b), (d), and (e) of Fig. 3,
regions showing no observable fluctuations exist in the phase

FIG. 3. (Color online) Conductance G as a function of disorder strength U0 and the Fermi level EF . Each data point corresponds to a single
disorder realization. (a)–(c) are the results with the CDW term, the AF terms in the sz and sx channels on the CSL strip respectively; (d)–(f) are
corresponding results on the SSL1 strip. Here, the parameters are the same as those in Fig. 2, when the system shows the band-inverted phase
in its clean form.
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FIG. 4. (Color online) One-dimensional energy bands with the
AF term in the sx channel on a strip geometry (a) CSL, (b) SSL1,
(c) SSL2. The parameters used here are the same as those in Fig. 2.

diagrams, implying that the QSH phase induced by CDW or
AF (in the sz channel) term is robust for disorder. We also
carried out calculations on strip SSL2, and the results are
similar to those on strip SSL1. These results are consistent
with what we expect.

IV. sx-CHANNEL MAGNETIC STAGGERED POTENTIAL

As mentioned, for the AF term, the magnetization can also
lie in the plane (generating the term in the sx or sy channel), and
in the following, we will focus on such terms. Including such
terms for the Hamiltonian described by Eq. (2) or Eq. (3), the
band evolvement at TRIM �1 is exactly the same as that due
to the CDW or AF potential in the sz channel. However, unlike
the cases with the sz channel term, the combined Hamiltonian
cannot be decoupled for spin-up and spin-down electrons (i.e.,
no longer is there sz conservation in the system). We perform
numerical diagonalization of Hamiltonians (2) and (3) with
the AF term in the sx channel (it is the same with the sy

channel term), and the one-dimensional energy bands with
a strip geometry are shown in Fig. 4. For strips CSL and
SSL1 (see insets of Fig. 2), the energy spectra are similar to
those in Fig. 2, and there are edge states traversing the gap in
the band-inverted phase. But for strip SSL2, the edge states
vanish although the system is in the band-inverted phase. The
difference can be understood from the symmetries existing in
the system. The AF term in the sx channel couples spin-up
and spin-down electrons, and the system only preserves the
combined symmetry of T and a primitive lattice translation.
The existence of edge states is due to the combined symmetry.

Since the edges of strip SSL2 are ferromagnetic and break
the combined symmetry, the edge states are gapped. However,
because the combined symmetry on the edges of strips CSL
and SSL1 is still preserved, the edge states exist. But these edge
states are no longer robust for disorder, which can be shown
from conductivity calculations [(c) and (f) of Fig. 3]. Here, it
is disorder that breaks the combined symmetry, and the QSH
phase in the system will no longer be protected. Whereas, for
the system with the sz channel term, although ferromagnetic
edges or disorder breaks the combined symmetry, the spin sz

conservation follows to assure the existence and robustness of
the edge states.

V. CONCLUSIONS

In conclusion, we introduce nonmagnetic and magnetic
staggered potentials to a trivial insulator with spin-orbit
coupling and find that they can induce a topological phase
transition and drive the system into topological phase. For the
nonmagnetic staggered potential, the resulting QSH phase is
protected by T symmetry and supports the edge states on any
edge, which is robust for disorder. Whereas, for the magnetic
staggered potential, there is a combined symmetry of T and a
primitive lattice translation in the system. Also, if there is an
additional symmetry, i.e., spin sz conservation, edge states will
exist on any edge in the band-inverted phase and are robust for
disorder. However, in the absence of such symmetry, although
edge states will exist on specific edges in the band-inverted
phase, they are no longer robust for disorder. Our results imply
that, although the QSH effect generally is protected by T
symmetry, if there are additional symmetries, the QSH effect
also can be found in T breaking systems.
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