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Elastoplastic phase field model for microstructure evolution
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Success has been obtained in predicting the dynamic evolution of microstructures during phase
transformation or cracking propagation by using the time-dependent phase field methodology
�PFM�. However, most efforts of PFM were made in the elastic regime. In this letter, stress
distributions around defects such as a hole and a crack in an externally loaded two-dimensional
representative volume element were investigated by a proposed phase field model that took both the
elastic and plastic deformations into consideration. Good agreement was found for static cases
compared to the use of finite element analysis. Therefore, the proposed phase field model provides
an opportunity to study the dynamic evolution of microstructures under plastic deformation. © 2005
American Institute of Physics. �DOI: 10.1063/1.2138358�
It is well known that microstructures of materials play a
crucial role in determining the properties of materials. As a
powerful computational approach to predicting mesoscale
morphological and microstructure evolution in materials, the
phase field method has attracted a considerable amount of
research effort and has found wide application in various
fields.1,2 In a phase field model �PFM�, the evolution of
structural variables and chemical compositions can be de-
scribed by time-dependent Ginzburg-Landau �TDGL� equa-
tions and by the Cahn-Hilliard diffusion equation, respec-
tively. In general, the evolution of microstructures will result
in the minimization of the free energy of the whole system,
which may consist of the bulk chemical free energy, elastic
strain energy, interfacial energy, electric and magnetic en-
ergy, and work done by applied external fields. Currently,
most efforts of PFM were made in the elastic regime. How-
ever, both experimental and computational results have
shown that the stresses around defects, crystal interfaces, or
precipitates can significantly exceed the elastic limit. There-
fore, for many applications, it is necessary to consider the
contribution from plastic deformation during microstructure
evolution. This is especially true when cracks are present in
metals. In this situation, plastic energy could be the dominat-
ing factor controlling the initiation and propagation of a
crack. In this letter, we propose to treat both elastic and
plastic deformations around a void or crack as phase vari-
ables. The proposed PFM can also be applied to other micro-
structure analyses such as phase transformation and
ordering,3,4 defect dynamics, and pattern formation,5 when
plastic deformation is involved.

An equivalent description can be made of the displace-
ment and strain energy of an anisotropic discontinuous body
with cracks under applied stress by an anisotropic continuous
noncracked body of the same macroscopic size and shape,
but with the heterogeneous misfit stress-free strain. The
Khachaturyan-Shatalov �KS� theory6 gives the exact elastic
strain and strain energy of a system for a given set of stress-
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free strains, �ij
0 �r�. The strain energy of the system is a func-

tion of �ij
0 �r� and an averaged strain �̄ij that affects the mac-

roscopic shape of the body. Based on KS theory,7,8 the strain
energy of a homogeneous system under a stress-controlled
boundary condition can be expressed as
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where V is the system volume; the integral W in the infinite
reciprocal space is evaluated as a principal value excluding
the volume around point k=0; � jk�n� is the Green function
tensor, which is the inverse of tensor � jk

−1�n�=niCijklnl; and
the tensor Sijkl is the elastic compliance tensor inverse to the
elastic modulus Cijkl; n=k /k is a unit directional vector in
the reciprocal space, �̃ij

0 �k�=Cijkl�̃kl
0 �k�; �̃kl

0 �k� is the Fourier
transform of the field �ij

0 �r�, i.e., �ij0�k�=��ij0�r�·exp
�−ik·r�d3r; the superscript asterisk �*� indicates the com-
plex conjugate; and �appl is the applied external stress.

When a state of equilibrium is reached, the strain energy
equation �1� approaches its minimum. According to the
variational principal, the first variational derivative of the
strain energy with respect to �ij

0 �r� will vanish in the void or
crack. The total stress can be given by8
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Generally, the total stress given by Eq. �2� has a nonzero
value outside the voids and cracks, but it vanishes inside
them. Therefore, the stress-free domains containing the mis-
fit strain �ij

0 �r� can be removed from the body without dis-
turbing the strain and stress outside the domains. The strain
energy minimizer �ij

0 �r� of a crack can be obtained by solv-
ing the following TDGL equation:8
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0 �r,t�
�t

= − Lijkl
�E
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, �3�

where Lijkl is the kinetic coefficient that characterizes the
evolution rate. Equations �1�–�3� have been used to describe
elastic cracks and voids.8

In order to include the effect of plastic deformation, we
assume that the stress-free strain �ij

0 �r� contains not only the
elastic strain �ij

e �r� but also the plastic strain �ij
p �r�, namely,

�ij
0 �r�=�ij

e �r�+�ij
p �r�. In other words, an additional phase field

variable �ij
p �r� is introduced, which requires an additional

TDGL equation similar to Eq. �3�. If the elastic-perfectly
plastic constitutive relation is assumed, Eqs. �1�–�3� are still
valid. One can see that the variational relaxing parameters
�ij

e �r� and �ij
p �r� play the same role as the long-range order

parameters in the phase field model during microstructure
evolution. The plastic strain �ij

p �r� describes the plastic de-
formation and the arbitrary plastic zone. An important prop-
erty of �ij

p �r� is that its magnitude depends only on the dis-
tortion strain energy at the location of concern. When the
distortion strain energy equals or exceeds a value related to
the yield stress of the materials, �ij

p �r� starts to be nonzero.
Following a similar procedure of Eq. �1�, the distortion strain
energy Edis for the stress-controlled condition is given by
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where eij
0 �r�=�ij

0 �r�−1/3�kk
0 �r��ij is the deviatoric strain, and

the deviatoric stress in Fourier space is s̃ij
0 �k�

=�VCijklekl
0 �r�exp�−ik·r�d3r. The evolution of the plastic

zone can then be depicted by the solution of an additional
TDGL equation
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where rp denotes the domain of plastic deformation; in other
words, Eq. �5� is valid only for the points inside plastic
zones; Kijkl is a kinetic coefficient characterizing the evolu-
tion rate of plastic deformation. Following Eq. �4�, one can
deduce the deviatoric stress field caused by the elastoplastic

deformation, as follows:
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Then, Eq. �5� can be written as the form of ��ij
p �rd , t� /�t

=−Kijklskl, which is similar to the classic Prandle-Reuss
theory, d�ij

p =�F /��ijd�=sijd�.9

In the first numerical example, a 1024�1024 pixel rep-
resentative volume element �RVE� with a circular hole was
subjected to normal stress of �0=200 MPa in the y direction.
The radius of the hole is R=25. The Young’s module of the
RVE material is E=100 GPa, and the Poisson ratio is �
=0.3. In our phase field computation, the elastic-perfectly
plastic constitutive relation and the von Mises yield criteria
are assumed. The yield stress is �s=300 MPa, and the defor-
mation of the RVE is assumed to be plane strain. For sim-
plicity, Lijkl=Sijkl /	t is chosen, where 	t is the unit time
increment. In order to improve the speed of convergence of
the TDGL kinetic equation, the fast Fourier transform tech-
nique is used to transform Eqs. �3� and �4� into reciprocal
space. Also for simplicity, we set Kijkl=Lijkl in our numerical
simulations. For comparison, the same configuration was
analyzed by the finite element method �FEM�, �in ABAQUS�.
In the second example, as shown in Fig. 1, a central crack of
100 pixels length and five pixels width was analyzed by
PFM and FEM, respectively. The material properties and
loading condition are the same as those in the first example.

Our PFM simulations provide a dynamic evolution of
stress, strain, and plastic deformation as a function of time
under external loads. A stable distribution of stress, strain
and plastic deformation will be reached at a sufficient time
period. The plastic deformation zones around the hole and
crack are illustrated in Fig. 2. Good agreement between PFM
and FEM is achieved. Figure 3 illustrates the distribution of
stress �yy obtained by these two methods. Both the distribu-
tion and the magnitude calculated by PFM are consistent
with those calculated by FEM. The differences in maximum
values predicted by PFM and FEM are about 1.6% and 3.7%,
respectively. The variations in the normalized stress compo-
nent �yy along horizontal line AB, which are shown in Fig. 4,
also showed good agreement between the two methods. The

FIG. 1. Schematic illustration of a crack under uniaxial tension in the y
direction.
difference was 1.6% for the hole and 2.0% for the crack,
ense or copyright; see http://apl.aip.org/about/rights_and_permissions
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respectively. Other stress components also show a similar
agreement.

In summary, both the elastic and plastic deformations of
a system with a hole or a crack under applied loading were
simulated by a proposed phase field approach. The evolution
of field variables, stress-free elastic, and plastic strains, and
the interaction among them are depicted by the solution of
the time-dependent Ginzburg-Landau equations. Taking the
yield and fracture criteria into account, the proposed PFM
can be used to predict the crack propagation trajectory with-
out priori assumed path. If the system also contains other
defects, such as grain boundaries and precipitates, the dy-

FIG. 2. Comparison of plastic zones calculated by PFM and FEM around
�a� a circular hole and �b� a crack.

FIG. 3. The distribution of �yy around a hole �a� using PFM and �b� using
FEM; �yy around a crack �c� using PFM and �d� using FEM. The values in
the figure legends are in units of megapascal.
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namic evolution of the microstructure of the whole system
can be described by the proposed PFM. One only has to add
more free energy terms, such as the interface energy and
stress-free strain of precipitates, into the TDGL equations
�3�.10 Therefore, the proposed phase field model provides an
opportunity to study the dynamic evolution of microstruc-
tures that involves plastic deformation.
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FIG. 4. The variations of �yy along a horizontal line AB �see Fig. 1� that
crosses �a� the centre of a circular hole and �b� the crack line.
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