9 research outputs found

    Experimental investigation on flue gas condensation heat recovery system integrated with heat pump and spray heat exchanger

    No full text
    To deeply recover the flue gas condensation heat, a flue gas condensation heat recovery system that combines a compression heat pump (FGCHR-HP) is proposed. An experimental bench of the FGCHR-HP system was established to explore the thermal properties of the system under variable operating conditions. The experimental results show that when the inlet water temperature of the heat pump condensing heat exchanger is 50 °C and the flow rate is 40 L/min, the optimal experimental conditions are achieved. Under this working condition, the heat efficiency is 13.8 %, and the exhaust gas temperature is 26.9 °C. At the same time, the flue gas moisture recovery is up to 6.5–7.0 kg/hour, which is better than other boilers.The payback period of the FGCHR-HP system is 3.4 years. The system has achieved significant energy-saving and water-saving effects, and has certain promotion and application prospects.©2024 Elsevier. This manuscript version is made available under the Creative Commons Attribution–NonCommercial–NoDerivatives 4.0 International (CC BY–NC–ND 4.0) license, https://creativecommons.org/licenses/by-nc-nd/4.0/fi=vertaisarvioitu|en=peerReviewed

    Anisotropic moiré optical transitions in twisted monolayer/bilayer phosphorene heterostructures.

    No full text
    Moiré superlattices of van der Waals heterostructures provide a powerful way to engineer electronic structures of two-dimensional materials. Many novel quantum phenomena have emerged in graphene and transition metal dichalcogenide moiré systems. Twisted phosphorene offers another attractive system to explore moiré physics because phosphorene features an anisotropic rectangular lattice, different from isotropic hexagonal lattices previously reported. Here we report emerging anisotropic moiré optical transitions in twisted monolayer/bilayer phosphorenes. The optical resonances in phosphorene moiré superlattice depend sensitively on twist angle and are completely different from those in the constitute monolayer and bilayer phosphorene even for a twist angle as large as 19°. Our calculations reveal that the Γ-point direct bandgap and the rectangular lattice of phosphorene give rise to the remarkably strong moiré physics in large-twist-angle phosphorene heterostructures. This work highlights fresh opportunities to explore moiré physics in phosphorene and other van der Waals heterostructures with different lattice configurations
    corecore