502 research outputs found
Strong signature of natural selection within an FHIT intron implicated in prostate cancer risk
Previously, a candidate gene linkage approach on brother pairs affected with prostate cancer identified a locus of prostate cancer susceptibility at D3S1234 within the fragile histidine triad gene (FHIT), a tumor suppressor that induces apoptosis. Subsequent association tests on 16 SNPs spanning approximately 381 kb surrounding D3S1234 in Americans of European descent revealed significant evidence of association for a single SNP within intron 5 of FHIT. In the current study, resequencing and genotyping within a 28.5 kb region surrounding this SNP further delineated the association with prostate cancer risk to a 15 kb region. Multiple SNPs in sequences under evolutionary constraint within intron 5 of FHIT defined several related haplotypes with an increased risk of prostate cancer in European-Americans. Strong associations were detected for a risk haplotype defined by SNPs 138543, 142413, and 152494 in all cases (Pearson's χ2 = 12.34, df 1, P = 0.00045) and for the homozygous risk haplotype defined by SNPs 144716, 142413, and 148444 in cases that shared 2 alleles identical by descent with their affected brothers (Pearson's χ2 = 11.50, df 1, P = 0.00070). In addition to highly conserved sequences encompassing SNPs 148444 and 152413, population studies revealed strong signatures of natural selection for a 1 kb window covering the SNP 144716 in two human populations, the European American (π = 0.0072, Tajima's D= 3.31, 14 SNPs) and the Japanese (π = 0.0049, Fay & Wu's H = 8.05, 14 SNPs), as well as in chimpanzees (Fay & Wu's H = 8.62, 12 SNPs). These results strongly support the involvement of the FHIT intronic region in an increased risk of prostate cancer. © 2008 Ding et al
Control of Cotton Fibre Elongation by a Homeodomain Transcription Factor GhHOX3
Cotton fibres are unusually long, single-celled epidermal seed trichomes and a model for plant cell growth, but little is known about the regulation of fibre cell elongation. Here we report that a homeodomain-leucine zipper (HD-ZIP) transcription factor, GhHOX3, controls cotton fibre elongation. GhHOX3 genes are localized to the 12th homoeologous chromosome set of allotetraploid cotton cultivars, associated with quantitative trait loci (QTLs) for fibre length. Silencing of GhHOX3 greatly reduces (\u3e80%) fibre length, whereas its overexpression leads to longer fibre. Combined transcriptomic and biochemical analyses identify target genes of GhHOX3 that also contain the L1-box cis-element, including two cell wall loosening protein genes GhRDL1 and GhEXPA1. GhHOX3 interacts with GhHD1, another homeodomain protein, resulting in enhanced transcriptional activity, and with cotton DELLA, GhSLR1, repressor of the growth hormone gibberellin (GA). GhSLR1 interferes with the GhHOX3–GhHD1 interaction and represses target gene transcription. Our results uncover a novel mechanism whereby a homeodomain protein transduces GA signal to promote fibre cell elongation
Tumour architecture is an independent predictor of outcomes after nephroureterectomy: a multi-institutional analysis of 1363 patients
To assess whether tumour architecture can help to refine the prognosis of patients treated with nephroureterectomy (NU) for urothelial carcinoma (UC) of the upper urinary tract (UT), as the prognostic value of tumour architecture (papillary vs sessile) in UTUC remains elusive. PATIENTS AND METHODS The study included 1363 patients with UTUC and treated with radical NU at 12 centres worldwide. All slides were re-reviewed according to strict criteria by genitourinary pathologists who were unaware of the findings of the original pathology slides and clinical outcomes. Gross tumour architecture was categorized as sessile vs papillary. RESULTS Papillary growth was identified in 983 patients (72.2%) and sessile growth in 380 (27.8%). The sessile growth pattern was associated with higher tumour grade, more advanced stage, lymphovascular invasion, and metastasis to lymph nodes (all P  < 0.001). In multivariable Cox regression analyses that adjusted for the effects of pathological stage, grade and lymph node status, tumour architecture (sessile or papillary) was an independent predictor of cancer recurrence (hazard ratio 1.5, P  = 0.002) and cancer-specific mortality (1.6, P  = 0.001). Adding tumour architecture increased the predictive accuracy of a model that comprised pathological stage, grade and lymph node status for predicting cancer recurrence and cancer-specific death by a minimal but statistically significant margin (gain in predictive accuracy 1% and 0.5%, both P  < 0.001). CONCLUSION The tumour architecture of UTUC is associated with established features of biologically aggressive disease, and more importantly, with prognosis after radical NU. Including tumour architecture in predictive models for disease progression should be considered, aiming to identify patients who might benefit from early systemic therapeutic intervention.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72257/1/j.1464-410X.2008.08003.x.pd
Versatile Coordination of Cyclopentadienyl-Arene Ligands and Its Role in Titanium-Catalyzed Ethylene Trimerization
Cationic titanium(IV) complexes with ansa-(η5-cyclopentadienyl,η6-arene) ligands were synthesized and characterized by X-ray crystallography. The strength of the metal-arene interaction in these systems was studied by variable-temperature NMR spectroscopy. Complexes with a C1 bridge between the cyclopentadienyl and arene moieties feature hemilabile coordination behavior of the ligand and consequently are active ethylene trimerization catalysts. Reaction of the titanium(IV) dimethyl cations with CO results in conversion to the analogous cationic titanium(II) dicarbonyl species. Metal-to-ligand backdonation in these formally low-valent complexes gives rise to a strongly bonded, partially reduced arene moiety. In contrast to the η6-arene coordination mode observed for titanium, the more electron-rich vanadium(V) cations [cyclopentadienyl-arene]V(NiPr2)(NC6H4-4-Me)+ feature η1-arene binding, as determined by a crystallographic study. The three different metal-arene coordination modes that we experimentally observed model intermediates in the cycle for titanium-catalyzed ethylene trimerization. The nature of the metal-arene interaction in these systems was studied by DFT calculations.
A Role for Cdc2- and PP2A-Mediated Regulation of Emi2 in the Maintenance of CSF Arrest
Vertebrate oocytes are arrested in metaphase II of meiosis prior to fertilization by cytostatic factor (CSF). CSF enforces a cell cycle arrest by inhibiting the anaphase promoting complex (APC), an E3 ubiquitin ligase that targets Cyclin B for degradation. Although Cyclin B synthesis is ongoing during CSF arrest, constant Cyclin B levels are maintained. To achieve this, oocytes allow continuous slow Cyclin B degradation, without eliminating the bulk of Cyclin B, which would induce release from CSF arrest. However, the mechanism that controls this continuous degradation is not understood
A Gene Expression Signature of Acquired Chemoresistance to Cisplatin and Fluorouracil Combination Chemotherapy in Gastric Cancer Patients
We initiated a prospective trial to identify transcriptional alterations associated with acquired chemotherapy resistance from pre- and post-biopsy samples from the same patient and uncover potential molecular pathways involved in treatment failure to help guide therapeutic alternatives.A prospective, high-throughput transcriptional profiling study was performed using endoscopic biopsy samples from 123 metastatic gastric cancer patients prior to cisplatin and fluorouracil (CF) combination chemotherapy. 22 patients who initially responded to CF were re-biopsied after they developed resistance to CF. An acquired chemotherapy resistance signature was identified by analyzing the gene expression profiles from the matched pre- and post-CF treated samples. The acquired resistance signature was able to segregate a separate cohort of 101 newly-diagnosed gastric cancer patients according to the time to progression after CF. Hierarchical clustering using a 633-gene acquired resistance signature (feature selection at P<0.01) separated the 101 pretreatment patient samples into two groups with significantly different times to progression (2.5 vs. 4.7 months). This 633-gene signature included the upregulation of AKT1, EIF4B, and RPS6 (mTOR pathway), DNA repair and drug metabolism genes, and was enriched for genes overexpressed in embryonic stem cell signatures. A 72-gene acquired resistance signature (a subset of the 633 gene signature also identified in ES cell-related gene sets) was an independent predictor for time to progression (adjusted P = 0.011) and survival (adjusted P = 0.034) of these 101 patients.This signature may offer new insights into identifying new targets and therapies required to overcome the acquired resistance of gastric cancer to CF
Role of water states on water uptake and proton transport in Nafion using molecular simulations and bimodal network
Using molecular simulations and a bimodal domain network, the role of water state on Nafion water uptake and water and proton transport is investigated. Although the smaller domains provide moderate transport pathways, their effectiveness remains low due to strong, resistive water molecules/domain surface interactions. The water occupancy of the larger domains yields bulk-like water, and causes the observed transition in the water uptake and significant increases in transport properties
Identification of a 4-microRNA Signature for Clear Cell Renal Cell Carcinoma Metastasis and Prognosis
Renal cell carcinoma (RCC) metastasis portends a poor prognosis and cannot be reliably predicted. Early determination of the metastatic potential of RCC may help guide proper treatment. We analyzed microRNA (miRNA) expression in clear cell RCC (ccRCC) for the purpose of developing a miRNA expression signature to determine the risk of metastasis and prognosis. We used the microarray technology to profile miRNA expression of 78 benign kidney and ccRCC samples. Using 28 localized and metastatic ccRCC specimens as the training cohort and the univariate logistic regression and risk score methods, we developed a miRNA signature model in which the expression levels of miR-10b, miR-139-5p, miR-130b and miR-199b-5p were used to determine the status of ccRCC metastasis. We validated the signature in an independent 40-sample testing cohort of different stages of primary ccRCCs using the microarray data. Within the testing cohort patients who had at least 5 years follow-up if no metastasis developed, the signature showed a high sensitivity and specificity. The risk status was proven to be associated with the cancer-specific survival. Using the most stably expressed miRNA among benign and tumorous kidney tissue as the internal reference for normalization, we successfully converted his signature to be a quantitative PCR (qPCR)-based assay, which showed the same high sensitivity and specificity. The 4-miRNA is associated with ccRCC metastasis and prognosis. The signature is ready for and will benefit from further large clinical cohort validation and has the potential for clinical application
Insulin-Stimulated Degradation of Apolipoprotein B100: Roles of Class II Phosphatidylinositol-3-Kinase and Autophagy
Both in humans and animal models, an acute increase in plasma insulin levels, typically following meals, leads to transient depression of hepatic secretion of very low density lipoproteins (VLDL). One contributing mechanism for the decrease in VLDL secretion is enhanced degradation of apolipoprotein B100 (apoB100), which is required for VLDL formation. Unlike the degradation of nascent apoB100, which occurs in the endoplasmic reticulum (ER), insulin-stimulated apoB100 degradation occurs post-ER and is inhibited by pan-phosphatidylinositol (PI)3-kinase inhibitors. It is unclear, however, which of the three classes of PI3-kinases is required for insulin-stimulated apoB100 degradation, as well as the proteolytic machinery underlying this response. Class III PI3-kinase is not activated by insulin, but the other two classes are. By using a class I-specific inhibitor and siRNA to the major class II isoform in liver, we now show that it is class II PI3-kinase that is required for insulin-stimulated apoB100 degradation in primary mouse hepatocytes. Because the insulin-stimulated process resembles other examples of apoB100 post-ER proteolysis mediated by autophagy, we hypothesized that the effects of insulin in autophagy-deficient mouse primary hepatocytes would be attenuated. Indeed, apoB100 degradation in response to insulin was significantly impaired in two types of autophagy-deficient hepatocytes. Together, our data demonstrate that insulin-stimulated apoB100 degradation in the liver requires both class II PI3-kinase activity and autophagy. © 2013 Andreo et al
MAP Kinase Phosphatase-2 Plays a Critical Role in Response to Infection by Leishmania mexicana
In this study we generated a novel dual specific phosphatase 4 (DUSP4) deletion mouse using a targeted deletion strategy in order to examine the role of MAP kinase phosphatase-2 (MKP-2) in immune responses. Lipopolysaccharide (LPS) induced a rapid, time and concentration-dependent increase in MKP-2 protein expression in bone marrow-derived macrophages from MKP-2+/+ but not from MKP-2−/− mice. LPS-induced JNK and p38 MAP kinase phosphorylation was significantly increased and prolonged in MKP-2−/− macrophages whilst ERK phosphorylation was unaffected. MKP-2 deletion also potentiated LPS-stimulated induction of the inflammatory cytokines, IL-6, IL-12p40, TNF-α, and also COX-2 derived PGE2 production. However surprisingly, in MKP-2−/− macrophages, there was a marked reduction in LPS or IFNγ-induced iNOS and nitric oxide release and enhanced basal expression of arginase-1, suggesting that MKP-2 may have an additional regulatory function significant in pathogen-mediated immunity. Indeed, following infection with the intracellular parasite Leishmania mexicana, MKP-2−/− mice displayed increased lesion size and parasite burden, and a significantly modified Th1/Th2 bias compared with wild-type counterparts. However, there was no intrinsic defect in MKP-2−/− T cell function as measured by anti-CD3 induced IFN-γ production. Rather, MKP-2−/− bone marrow-derived macrophages were found to be inherently more susceptible to infection with Leishmania mexicana, an effect reversed following treatment with the arginase inhibitor nor-NOHA. These findings show for the first time a role for MKP-2 in vivo and demonstrate that MKP-2 may be essential in orchestrating protection against intracellular infection at the level of the macrophage
- …