14 research outputs found

    The Conduit System Transports Soluble Antigens from the Afferent Lymph to Resident Dendritic Cells in the T Cell Area of the Lymph Node

    Get PDF
    AbstractResident dendritic cells (DC) within the T cell area of the lymph node take up soluble antigens that enter via the afferent lymphatics before antigen carrying DC arrive from the periphery. The reticular network within the lymph node is a conduit system forming the infrastructure for the fast delivery of soluble substances from the afferent lymph to the lumen of high endothelial venules (HEVs). Using high-resolution light microscopy and 3D reconstruction, we show here that these conduits are unique basement membrane-like structures ensheathed by fibroblastic reticular cells with occasional resident DC embedded within this cell layer. Conduit-associated DC are capable of taking up and processing soluble antigens transported within the conduits, whereas immigrated mature DC occur remote from the reticular fibers. The conduit system is, therefore, not a closed compartment that shuttles substances through the lymph node but represents the morphological equivalent to the filtering function of the lymph node

    Fibromodulin Deficiency Reduces Low-Density Lipoprotein Accumulation in Atherosclerotic Plaques in Apolipoprotein E-Null Mice.

    Get PDF
    OBJECTIVE: The aim of this study was to analyze how an altered collagen structure affects development of atherosclerotic plaques. METHODS AND RESULTS: Fibromodulin-null mice develop an abnormal collagen fibril structure. In apolipoprotein E (ApoE)-null and ApoE/fibromodulin-null mice, a shear stress-modifying carotid artery cast induced formation of atherosclerotic plaques of different phenotypes; inflammatory in low-shear stress regions and fibrous in oscillatory shear stress regions. Electron microscopy showed that collagen fibrils were thicker and more heterogeneous in oscillatory shear stress lesions from ApoE/fibromodulin-null mice. Low-shear stress lesions were smaller in ApoE/fibromodulin-null mice and contained less lipids. Total plaque burden in aortas stained en face with Oil Red O, as well as lipid accumulation in aortic root lesions, was also decreased in ApoE/fibromodulin-null mice. In addition, lipid accumulation in RAW264.7 macrophages cultured on fibromodulin-deficient extracellular matrix was decreased, whereas levels of interleukin-6 and -10 were increased. Our results show that an abnormal plaque collagen fibril structure can influence atherosclerotic plaque development. CONCLUSIONS: The present findings suggest a more complex role for collagen in plaque stability than previously anticipated, in that it may promote lipid-accumulation and inflammation at the same time as it provides mechanical stability

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    Extracellular matrix alterations in brains lacking four of its components.

    Get PDF
    Abstract is not available. This is the final, accepted and revised manuscript of this article. Use alternative location to go to the published article. Requires subscription

    Angiogenesis inhibitor TNP-470 augments the effect of repeated arterial ischemia on growth but does not affect take in a rat liver tumor model

    No full text
    Transient hepatic arterial occlusion causes necrosis in solid hepatic tumors in the rat, but regrowth of tumor cells and capillaries takes place from the tumor periphery. It was therefore considered of interest to combine this treatment with the angiogenesis inhibitor TNP-470 (therapeutic model). Wistar rats with a dimethylhydrazine-induced adenocarcinoma implanted into the liver received one of the following treatments: TNP-470 + transient hepatic ischemia, transient hepatic ischemia alone, TNP-470 alone or sham solution alone. Rats were sacrificed one week after the start of treatment. In addition, we investigated if TNP-470 decreases the risk of tumor take in the liver after intraportal injection of viable tumor cells (adjuvant study). Transient hepatic ischemia combined with TNP-470 gave a smaller increase in tumor volume than transient hepatic ischemia (p < 0.01), TNP-470 (p < 0.001) alone or no treatment (p < 0.001). Transient hepatic ischemia or TNP-470 caused a significant suppression of tumor growth when compared to controls (p < 0.01 in both cases). In the adjuvant study, TNP-470 caused retardation of tumor growth (p < 0.01 as compared to controls) but did not affect tumor number. It is concluded that TNP-470 suppressed tumor growth, both alone and in combination with transient hepatic ischemia, but did not affect take of tumor

    Clinical manifestations of intermediate allele carriers in Huntington disease

    No full text
    Objective: There is controversy about the clinical consequences of intermediate alleles (IAs) in Huntington disease (HD). The main objective of this study was to establish the clinical manifestations of IA carriers for a prospective, international, European HD registry. Methods: We assessed a cohort of participants at risk with <36 CAG repeats of the huntingtin (HTT) gene. Outcome measures were the Unified Huntington's Disease Rating Scale (UHDRS) motor, cognitive, and behavior domains, Total Functional Capacity (TFC), and quality of life (Short Form-36 [SF-36]). This cohort was subdivided into IA carriers (27-35 CAG) and controls (<27 CAG) and younger vs older participants. IA carriers and controls were compared for sociodemographic, environmental, and outcome measures. We used regression analysis to estimate the association of age and CAG repeats on the UHDRS scores. Results: Of 12,190 participants, 657 (5.38%) with <36 CAG repeats were identified: 76 IA carriers (11.56%) and 581 controls (88.44%). After correcting for multiple comparisons, at baseline, we found no significant differences between IA carriers and controls for total UHDRS motor, SF-36, behavioral, cognitive, or TFC scores. However, older participants with IAs had higher chorea scores compared to controls (p 0.001). Linear regression analysis showed that aging was the most contributing factor to increased UHDRS motor scores (p 0.002). On the other hand, 1-year follow-up data analysis showed IA carriers had greater cognitive decline compared to controls (p 0.002). Conclusions: Although aging worsened the UHDRS scores independently of the genetic status, IAs might confer a late-onset abnormal motor and cognitive phenotype. These results might have important implications for genetic counseling. ClinicalTrials.gov identifier: NCT01590589

    Optimization of adsorptive removal of α-toluic acid by CaO2 nanoparticles using response surface methodology

    Get PDF
    The present work addresses the optimization of process parameters for adsorptive removal of α-toluic acid by calcium peroxide (CaO2) nanoparticles using response surface methodology (RSM). CaO2 nanoparticles were synthesized by chemical precipitation method and confirmed by Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) analysis which shows the CaO2 nanoparticles size range of 5–15 nm. A series of batch adsorption experiments were performed using CaO2 nanoparticles to remove α-toluic acid from the aqueous solution. Further, an experimental based central composite design (CCD) was developed to study the interactive effect of CaO2 adsorbent dosage, initial concentration of α-toluic acid, and contact time on α-toluic acid removal efficiency (response) and optimization of the process. Analysis of variance (ANOVA) was performed to determine the significance of the individual and the interactive effects of variables on the response. The model predicted response showed a good agreement with the experimental response, and the coefficient of determination, (R2) was 0.92. Among the variables, the interactive effect of adsorbent dosage and the initial α-toluic acid concentration was found to have more influence on the response than the contact time. Numerical optimization of process by RSM showed the optimal adsorbent dosage, initial concentration of α-toluic acid, and contact time as 0.03 g, 7.06 g/L, and 34 min respectively. The predicted removal efficiency was 99.50%. The experiments performed under these conditions showed α-toluic acid removal efficiency up to 98.05%, which confirmed the adequacy of the model prediction
    corecore