41 research outputs found

    Complex facilitation and competition in a temperate grassland: loss of plant diversity and elevated CO\u3csub\u3e2\u3c/sub\u3e have divergent and opposite effects on oak establishment

    Get PDF
    Encroachment of woody vegetation into grasslands is a widespread phenomenon that alters plant community composition and ecosystem function. Woody encroachment is often the result of fire suppression, but it may also be related to changes in resource availability associated with global environmental change. We tested the relative strength of three important global change factors (CO2 enrichment, nitrogen deposition, and loss of herbaceous plant diversity) on the first 3 years of bur oak (Quercus macrocarpa) seedling performance in a field experiment in central Minnesota, USA. We found that loss of plant diversity decreased initial oak survival but increased overall oak growth. Conversely, elevated CO2 increased initial oak seedling survival and reduced overall growth, especially at low levels of diversity. Nitrogen deposition surprisingly had no net effect on survival or growth. The magnitude of these effects indicates that long-term woody encroachment trends may be most strongly associated with those few individuals that survive, but grow much larger in lower diversity patches. Further, while the CO2 results and the species richness results appear to describe opposing trends, this is due only to the fact that the natural drivers are moving in opposite directions (decreasing species richness and increasing CO2). Interestingly, the mechanisms that underlie both patterns are very similar, increased CO2 and increased species richness both increase herbaceous biomass which (1) increases belowground competition for resources and (2) increases facilitation of early plant survival under a more diverse plant canopy; in other words, both competition and facilitation help determine community composition in these grasslands

    Invasive Vegetation Affects Amphibian Skin Microbiota and Body Condition

    Get PDF
    Invasive plants are major drivers of habitat modification and the scale of their impact is increasing globally as anthropogenic activities facilitate their spread. In California, an invasive plant genus of great concern is Eucalyptus. Eucalyptus leaves can alter soil chemistry and negatively affect underground macro- and microbial communities. Amphibians serve as excellent models to evaluate the effect of Eucalyptus invasion on ground-dwelling species as they predate on soil arthropods and incorporate soil microbes into their microbiotas. The skin microbiota is particularly important to amphibian health, suggesting that invasive plant species could ultimately affect amphibian populations. To investigate the potential for invasive vegetation to induce changes in microbial communities, we sampled microbial communities in the soil and on the skin of local amphibians. Specifically, we compared Batrachoseps attenuatus skin microbiomes in both Eucalyptus globulus (Myrtaceae) and native Quercus agriflolia (Fagaceae) dominated forests in the San Francisco Bay Area. We determined whether changes in microbial diversity and composition in both soil and Batrachoseps attenuatus skin were associated with dominant vegetation type. To evaluate animal health across vegetation types, we compared Batrachoseps attenuatus body condition and the presence/absence of the amphibian skin pathogen Batrachochytrium dendrobatidis. We found that Eucalyptus invasion had no measurable effect on soil microbial community diversity and a relatively small effect (compared to the effect of site identity) on community structure in the microhabitats sampled. In contrast, our results show that Batrachoseps attenuatus skin microbiota diversity was greater in Quercus dominated habitats. One amplicon sequence variant identified in the family Chlamydiaceae was observed in higher relative abundance among salamanders sampled in Eucalyptus dominated habitats. We also observed that Batrachoseps attenuatus body condition was higher in Quercus dominated habitats. Incidence of Batrachochytrium dendrobatidis across all individuals was very low (only one Batrachochytrium dendrobatidis positive individual). The effect on body condition demonstrates that although Eucalyptus may not always decrease amphibian abundance or diversity, it can potentially have cryptic negative effects. Our findings prompt further work to determine the mechanisms that lead to changes in the health and microbiome of native species post-plant invasion

    Reproductive Success of Eastern Bluebirds (Siala sialis) on Suburban Golf Courses

    Get PDF
    Understanding the role of green space in urban—suburban landscapes is becoming critical for bird conservation because of rampant habitat loss and conversion. Although not natural habitat, golf courses could play a role in bird conservation if they support breeding populations of some native species, yet scientists remain skeptical. In 2003–2009, we measured reproduction of Eastern Bluebirds (Siala sialis) in Virginia on golf courses and surrounding reference habitats, of the type that would have been present had golf courses not been developed on these sites (e.g., recreational parks, cemeteries, agriculture land, and college campus). We monitored \u3e650 nest boxes and 2,255 nest attempts (n = 1,363 golf course, n = 892 reference site). We used an information-theoretic modeling approach to evaluate whether conditions on golf courses affected timing of breeding, investment, or nest productivity compared with nearby reference sites. We found that Eastern Bluebirds breeding on golf courses reproduced as well as those breeding in other disturbed habitats. Habitat type had no effect on initial reproductive investment, including date of clutch initiation or clutch size ( = 4 eggs). During incubation and hatching, eggs in nests on golf courses had higher hatching rates (80%) and brood sizes ( = 4.0 nestlings brood-1) than nests on reference sites (75% hatching rate; = 3.8 nestlings brood-1). Mortality of older nestlings was also lower on golf courses and, on average, golf course nests produced 0.3 more fledglings than nests on reference sites. Thus, within a matrix of human-dominated habitats, golf courses may support productive populations of some avian species that can tolerate moderate levels of disturbance, like Eastern Bluebirds

    Challenges and opportunities for integrating lake ecosystem modelling approaches

    Full text link

    Data from: Rapid change in the thermal tolerance of a tropical lizard

    No full text
    The predominant view is that the thermal physiology of tropical ectotherms, including lizards, is not labile over ecological timescales. We used the recent introduction (∼35 years ago) of the Puerto Rican lizard Anolis cristatellus to Miami, Florida, to test this thermal rigidity hypothesis. We measured lower (critical thermal minimum [CTmin]) and upper (critical thermal maximum [CTmax]) thermal tolerances and found that the introduced population tolerates significantly colder temperatures (by ∼3°C) than does the Puerto Rican source population; however, CTmax did not differ. These results mirror the thermal regimes experienced by each population: Miami reaches colder ambient temperatures than Puerto Rico, but maximum ambient temperatures are similar. The differences in CTmin were observed even though lizards from both sites experienced nearly identical conditions for 49 days before CTmin measurement. Our results demonstrate that changes in thermal tolerance occurred relatively rapidly (∼35 generations), which strongly suggests that the thermal physiology of tropical lizards is more labile than previously proposed

    Data from: Patterns of thermal constraint on ectotherm activity

    No full text
    Thermal activity constraints play a major role in many aspects of ectotherm ecology, including vulnerability to climate change. Therefore, there is strong interest in developing general models of the temperature dependence of activity. Several models have been put forth (explicitly or implicitly) to describe such constraints; nonetheless, tests of the predictive abilities of these models are lacking. In addition, most models consider activity as a threshold trait instead of considering continuous changes in the vigor of activity among individuals. Using field data for a tropical lizard (Anolis cristatellus) and simulations parameterized by our observations, we determine how well various threshold and continuous-activity models match observed activity patterns. No models accurately predicted activity under all of the thermal conditions that we considered. In addition, simulations showed that the performance of threshold models decreased as temperatures increased, which is a troubling finding given the threat of global climate change. We also find that activity rates are more sensitive to temperature than are the physiological traits often used as a proxy for fitness. We present a model of thermal constraint on activity that integrates aspects of both the threshold model and the continuous-activity model, the general features of which are supported by activity data from other species. Overall, our results demonstrate that greater attention should be given to fine-scale patterns of thermal constraint on activity

    Christian varanid spp activity

    No full text
    Data on activity for Varanids from Christian and Weavers 199

    Data from: Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming

    No full text
    Global warming is increasing the overheating risk for many organisms, though the potential for plasticity in thermal tolerance to mitigate this risk is largely unknown. In part, this shortcoming stems from a lack of knowledge about global and taxonomic patterns of variation in tolerance plasticity. To address this critical issue, we test leading hypotheses for broad-scale variation in ectotherm tolerance plasticity using a dataset that includes vertebrate and invertebrate taxa from terrestrial, freshwater and marine habitats. Contrary to expectation, plasticity in heat tolerance was unrelated to latitude or thermal seasonality. However, plasticity in cold tolerance is associated with thermal seasonality in some habitat types. In addition, aquatic taxa have approximately twice the plasticity of terrestrial taxa. Based on the observed patterns of variation in tolerance plasticity, we propose that limited potential for behavioural plasticity (i.e. behavioural thermoregulation) favours the evolution of greater plasticity in physiological traits, consistent with the ‘Bogert effect’. Finally, we find that all ectotherms have relatively low acclimation in thermal tolerance and demonstrate that overheating risk will be minimally reduced by acclimation in even the most plastic groups. Our analysis indicates that behavioural and evolutionary mechanisms will be critical in allowing ectotherms to buffer themselves from extreme temperatures

    GundersonLeal15_AmNat_Anole_Data

    No full text
    Activity data for Anolis cristatellu
    corecore