108 research outputs found

    Antisense Therapy for Infectious Diseases

    Get PDF
    Infectious diseases, particularly Tuberculosis (TB) caused by Mycobacterium tuberculosis, pose a significant global health challenge, with 1.6 million reported deaths in 2021, making it the most fatal disease caused by a single infectious agent. The rise of drug-resistant infectious diseases adds to the urgency of finding effective and safe intervention therapies. Antisense therapy uses antisense oligonucleotides (ASOs) that are short, chemically modified, single-stranded deoxyribonucleotide molecules complementary to their mRNA target. Due to their designed target specificity and inhibition of a disease-causing gene at the mRNA level, antisense therapy has gained interest as a potential therapeutic approach. This type of therapy is currently utilized in numerous diseases, such as cancer and genetic disorders. Currently, there are limited but steadily increasing studies available that report on the use of ASOs as treatment for infectious diseases. This review explores the sustainability of FDA-approved and preclinically tested ASOs as a treatment for infectious diseases and the adaptability of ASOs for chemical modifications resulting in reduced side effects with improved drug delivery; thus, highlighting the potential therapeutic uses of ASOs for treating infectious diseases

    Simvastatin enhances protection against Listeria monocytogenes infection in mice by counteracting Listeria-induced phagosomal escape

    Get PDF
    Statins are well-known cholesterol lowering drugs targeting HMG-CoA-reductase, reducing the risk of coronary disorders and hypercholesterolemia. Statins are also involved in immunomodulation, which might influence the outcome of bacterial infection. Hence, a possible effect of statin treatment on Listeriosis was explored in mice. Statin treatment prior to subsequent L. monocytogenes infection strikingly reduced bacterial burden in liver and spleen (up to 100-fold) and reduced histopathological lesions. Statin-treatment in infected macrophages resulted in increased IL-12p40 and TNF-α and up to 4-fold reduced bacterial burden within 6 hours post infection, demonstrating a direct effect of statins on limiting bacterial growth in macrophages. Bacterial uptake was normal investigated in microbeads and GFP-expressing Listeria experiments by confocal microscopy. However, intracellular membrane-bound cholesterol level was decreased, as analyzed by cholesterol-dependent filipin staining and cellular lipid extraction. Mevalonate supplementation restored statin-inhibited cholesterol biosynthesis and reverted bacterial growth in Listeria monocytogenes but not in listeriolysin O (LLO)-deficient Listeria . Together, these results suggest that statin pretreatment increases protection against L. monocytogenes infection by reducing membrane cholesterol in macrophages and thereby preventing effectivity of the cholesterol-dependent LLO-mediated phagosomal escape of bacteria

    The gut microbiome in tuberculosis susceptibility and treatment response: guilty or not guilty?

    Get PDF
    CITATION:Osagie A. Eribo, Nelita du Plessis, Mumin Ozturk, Reto Guler, Gerhard Walzl & Novel N. Chegou Cellular and Molecular Life Sciences volume 77, pages 1497–1509 (2020)Although tuberculosis (TB) is a curable disease, it remains the foremost cause of death from a single pathogen. Globally, approximately 1.6 million people died of TB in 2017. Many predisposing factors related to host immunity, genetics and the environment have been linked to TB. However, recent evidence suggests a relationship between dysbiosis in the gut microbiome and TB disease development. The underlying mechanism(s) whereby dysbiosis in the gut microbiota may impact the different stages in TB disease progression, are, however, not fully explained. In the wake of recently emerging literature, the gut microbiome could represent a potential modifiable host factor to improve TB immunity and treatment response. Herein, we summarize early data detailing (1) possible association between gut microbiome dysbiosis and TB (2) the potential for the use of microbiota biosignatures to discriminate active TB disease from healthy individuals (3) the adverse effect of protracted anti-TB antibiotics treatment on gut microbiota balance, and possible link to increased susceptibility to Mycobacterium tuberculosis re-infection or TB recrudescence following successful cure. We also discuss immune pathways whereby the gut microbiome could impact TB disease and serve as target for clinical manipulation

    Genome-wide profiling of transcribed enhancers during macrophage activation

    Get PDF
    Background: Macrophages are sentinel cells essential for tissue homeostasis and host defence. Owing to their plasticity, macrophages acquire a range of functional phenotypes in response to microenvironmental stimuli, of which M(IFN-γ) and M(IL-4/IL-13) are well known for their opposing pro- and anti-inflammatory roles. Enhancers have emerged as regulatory DNA elements crucial for transcriptional activation of gene expression. Results: Using cap analysis of gene expression and epigenetic data, we identify on large-scale transcribed enhancers in bone marrow-derived mouse macrophages, their time kinetics, and target protein-coding genes. We observe an increase in target gene expression, concomitant with increasing numbers of associated enhancers, and find that genes associated with many enhancers show a shift towards stronger enrichment for macrophage-specific biological processes. We infer enhancers that drive transcriptional responses of genes upon M(IFN-γ) and M(IL-4/IL-13) macrophage activation and demonstrate stimuli specificity of regulatory associations. Finally, we show that enhancer regions are enriched for binding sites of inflammation-related transcription factors, suggesting a link between stimuli response and enhancer transcriptional control. Conclusions: Our study provides new insights into genome-wide enhancer-mediated transcriptional control of macrophage genes, including those implicated in macrophage activation, and offers a detailed genome-wide catalogue of transcribed enhancers in bone marrow-derived mouse macrophages

    Differential Targeting of c-Maf, Bach-1, and Elmo-1 by microRNA-143 and microRNA-365 Promotes the Intracellular Growth of Mycobacterium tuberculosis in Alternatively IL-4/IL-13 Activated Macrophages

    Get PDF
    Mycobacterium tuberculosis (Mtb) can subvert the host defense by skewing macrophage activation toward a less microbicidal alternative activated state to avoid classical effector killing functions. Investigating the molecular basis of this evasion mechanism could uncover potential candidates for host directed therapy against tuberculosis (TB). A limited number of miRNAs have recently been shown to regulate host-mycobacterial interactions. Here, we performed time course kinetics experiments on bone marrow-derived macrophages (BMDMs) and human monocyte-derived macrophages (MDMs) alternatively activated with IL-4, IL-13, or a combination of IL-4/IL-13, followed by infection with Mtb clinical Beijing strain HN878. MiR-143 and miR-365 were highly induced in Mtb-infected M(IL-4/IL-13) BMDMs and MDMs. Knockdown of miR-143 and miR-365 using antagomiRs decreased the intracellular growth of Mtb HN878, reduced the production of IL-6 and CCL5 and promoted the apoptotic death of Mtb HN878-infected M(IL-4/IL-13) BMDMs. Computational target prediction identified c-Maf, Bach-1 and Elmo-1 as potential targets for both miR-143 and miR-365. Functional validation using luciferase assay, RNA-pulldown assay and Western blotting revealed that c-Maf and Bach-1 are directly targeted by miR-143 while c-Maf, Bach-1, and Elmo-1 are direct targets of miR-365. Knockdown of c-Maf using GapmeRs promoted intracellular Mtb growth when compared to control treated M(IL-4/IL-13) macrophages. Meanwhile, the blocking of Bach-1 had no effect and blocking Elmo-1 resulted in decreased Mtb growth. Combination treatment of M(IL-4/IL-13) macrophages with miR-143 mimics or miR-365 mimics and c-Maf, Bach-1, or Elmo-1 gene-specific GapmeRs restored Mtb growth in miR-143 mimic-treated groups and enhanced Mtb growth in miR-365 mimics-treated groups, thus suggesting the Mtb growth-promoting activities of miR-143 and miR-365 are mediated at least partially through interaction with c-Maf, Bach-1, and Elmo-1. We further show that knockdown of miR-143 and miR-365 in M(IL-4/IL-13) BMDMs decreased the expression of HO-1 and IL-10 which are known targets of Bach-1 and c-Maf, respectively, with Mtb growth-promoting activities in macrophages. Altogether, our work reports a host detrimental role of miR-143 and miR-365 during Mtb infection and highlights for the first time the role and miRNA-mediated regulation of c-Maf, Bach-1, and Elmo-1 in Mtb-infected M(IL-4/IL-13) macrophages

    The C-type lectin receptor CLECSF8 (CLEC4D) is expressed by myeloid cells and triggers cellular activation through syk kinase

    Get PDF
    11 pags, 7 figsCLECSF8 is a poorly characterized member of the "Dectin-2 cluster" of C-type lectin receptors and was originally thought to be expressed exclusively by macrophages. We show here that CLECSF8 is primarily expressed by peripheral blood neutrophils and monocytes and weakly by several subsets of peripheral blood dendritic cells. However, expression of this receptor is lost upon in vitro differentiation of monocytes into dendritic cells or macrophages. Like the other members of the Dectin-2 family, which require association of their transmembrane domains with signaling adaptors for surface expression, CLECSF8 is retained intracellularly when expressed in non-myeloid cells. However, we demonstrate that CLECSF8 does not associate with any known signaling adaptor molecule, including DAP10, DAP12, or the FcRγ chain, and we found that the C-type lectin domain of CLECSF8 was responsible for its intracellular retention. Although CLECSF8 does not contain a signaling motif in its cytoplasmic domain, we show that this receptor is capable of inducing signaling via Syk kinase in myeloid cells and that it can induce phagocytosis, proinflammatory cytokine production, and the respiratory burst. These data therefore indicate that CLECSF8 functions as an activation receptor on myeloid cells and associates with a novel adaptor molecule. Characterization of the CLECSF8-deficient mice and screening for ligands using oligosaccharide microarrays did not provide further insights into the physiological function of this receptor. © 2012 by The American Society for Biochemistry and Molecular Biology, Inc.This work was funded by the Wellcome Trust, the National Research Foundation, the Deutscher Akademischer Austauschdienst, the University of Cape Town, the UK Research Council Basic Technology Initiative “Glycoar-rays” (GRS/79268), and the UK Medical Research Council. A. S. P is a fellowof the Fundação para a Ciência e Tecnologia (SFRH/BPD/26515/2006, Portugal) and M. A. C. of the Consejo Superior de Investigaciones Cientificas, Programe “Junta para la Ampliación de Estudios” (JaeDoc/098/2011) cofinanced by the Fondo Social Europeo

    Evaluation of Minor Groove Binders (MGBs) as novel anti-mycobacterial agents, and the effect of using non-ionic surfactant vesicles as a delivery system to improve their efficacy

    Get PDF
    Objectives: The slow development of major advances in drug discovery for the treatment of Mycobacterium tuberculosis (Mtb) infection have led to a compelling need for evaluation of more effective drug therapies against tuberculosis. New classes of drugs are constantly being evaluated for anti-mycobacterial activity with currently a very limited number of new drugs approved for TB treatment. Minor Groove Binders (MGBs) have previously revealed promising anti-microbial activity against various infectious agents; however have not yet been screened against Mtb. Methods: Mycobactericidal activity of MGB compounds against Mtb was determined using H37Rv-GFP microplate assay. MGB hits were screened for their intracellular mycobactericidal efficacy against clinical Beijing Mtb strain HN878 in bone marrow-derived macrophages using standard colony-forming unit counting. Cell viability was assessed by CellTiter-Blue assays. Selected MGB were encapsulated into non-ionic surfactant vesicles (NIVs) for drug delivery system evaluation. Results: H37Rv-GFP screening yielded a hitlist of 7 compounds at an MIC99 between 0.39 and 1.56 μM. MGB-362 and MGB-364 displayed intracellular mycobactericidal activity against Mtb HN878 at MIC50 of 4.09 μM and 4.19 μM respectively, whilst being non-toxic. Subsequent encapsulation into NIVs demonstrated a 1.6 and 2.1-fold increased intracellular mycobacterial activity, similar to that of rifampicin when compared to MGB alone formulation Conclusions: MGBs anti-mycobacterial activities together with non-toxic properties indicate that MGB compounds constitute an important new class of drug/chemical entity, which holds promise in future anti-TB therapy. Furthermore, NIVs ability to better deliver entrapped MGB compounds to an intracellular Mtb infection has provided merit for further preclinical evaluation
    corecore