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Abstract: Infectious diseases, particularly Tuberculosis (TB) caused by Mycobacterium tuberculosis,
pose a significant global health challenge, with 1.6 million reported deaths in 2021, making it the most
fatal disease caused by a single infectious agent. The rise of drug-resistant infectious diseases adds to
the urgency of finding effective and safe intervention therapies. Antisense therapy uses antisense
oligonucleotides (ASOs) that are short, chemically modified, single-stranded deoxyribonucleotide
molecules complementary to their mRNA target. Due to their designed target specificity and inhibi-
tion of a disease-causing gene at the mRNA level, antisense therapy has gained interest as a potential
therapeutic approach. This type of therapy is currently utilized in numerous diseases, such as cancer
and genetic disorders. Currently, there are limited but steadily increasing studies available that report
on the use of ASOs as treatment for infectious diseases. This review explores the sustainability of
FDA-approved and preclinically tested ASOs as a treatment for infectious diseases and the adaptabil-
ity of ASOs for chemical modifications resulting in reduced side effects with improved drug delivery;
thus, highlighting the potential therapeutic uses of ASOs for treating infectious diseases.
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1. Introduction

Antisense therapy involves administering antisense oligonucleotides (ASOs) to targets
and inhibiting the translation of disease-associated messenger RNA (mRNA) [1]. ASOs
are short, single-stranded, synthetic polymer nucleotides that regulate gene expression
by gene silencing or modulating splicing [2]. While they hinder protein expression, they
can also promote the expression of desired proteins through splice modulation of tar-
geted pre-mRNA [3,4]. These genetically engineered oligonucleotides specifically bind to
complementary target pre-mRNA or mRNA [5].

ASOs can be categorized into two broad modes of action based on their design: RNA
cleavage and RNA blockage. ASO-mediated RNA cleavage involves molecular RNA degra-
dation using ribonuclease RNAse-1-H [6] or gene silencing through RNA interference
(RNAi) [7]. ASO-mediated RNA blockage relies on steric hindrance achieved by advanced
binding affinity or splice modulation, resulting in exon exclusion [8] or inclusion [9], de-
pending on the desired outcome [10,11]. Compared to conventional therapies, antisense
therapies have shown promising success due to their engineered target specificity, leading
to fewer side effects like cytotoxicity. Chemical modifications have led to improved gen-
erations of ASOs, enhancing resistance to degradation, binding affinity, delivery, cellular
uptake, and intracellular trafficking [12–15]. The efficacy of ASOs was improved by intro-
ducing chemical modifications to the ribose sugar or phosphorothioate (PS) backbone of
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the molecule [16]. These chemical modifications further provide the ability to customize
the ASOs for different clinical applications.

The major challenge with current antimicrobial therapies for infectious diseases is
the emergence of multi-drug-resistant pathogens, as seen in tuberculosis, the leading
cause of global death due to drug-resistant strains [17]. Therefore, the search for highly
effective, safe, and precise therapies is crucial for global health development [18]. An-
tisense therapies have demonstrated their potential in inhibiting viral replication and
silencing disease-associated genes [19,20], making them a viable option for emerging and
re-emerging infectious diseases. ASOs can be employed as host-directed therapy adjuncts
to existing treatments, targeting host factors contributing to pathogenesis [21,22]. This
not only enhances the host’s immune response but also reduces drug resistance. ASO-
based therapies hold promise for personalized therapy and may revolutionize disease
treatment [23].

2. ASO Modifications and Delivery

Previously, chemically unmodified ASOs were ineffective as RNA therapeutics due
to their larger size, charge, and the presence of the phosphodiester bond. These charac-
teristics hindered the passive diffusion of ASOs into the target cell [24], rendering them
susceptible to degradation by nucleases [25]. However, newer generations of ASOs have
been developed to address these limitations, offering enhanced efficiency, accuracy, re-
duced toxicity, and enzymatic stability. The first significant chemical modification involved
the introduction of phosphorothioate (PS) linkages, wherein a phosphate group replaced
the non-bridging oxygen with a sulfur group [26]. PS-ASOs exhibit improved enzymatic
stability, effectively resisting nuclease degradation [27] and enhancing efficiency through
targeted mRNA degradation by RNase H [28]. Despite these improvements, the first-
generation ASOs were associated with some adverse effects, such as low binding affinity
and immune stimulation [29].

The second generation of ASOs includes 2′-modified phosphorothioates, such as 2′-
O-methyl (2′-O-Me) and 2′-O-methoxyethyl (2′-O-MOE) oligonucleotides, which have
alkyl modifications at the 2′-position of the ribose [30]. These ASOs are highly resistant to
nuclease degradation and have higher target binding affinity [31,32]. For instance, IONIS-
HBV, a 2′-O-Me ASO, is currently undergoing clinical trials for chronic hepatitis B (HBV)
infection. Phase 2 findings revealed a dose-dependent reduction in HBV DNA and the
HBV surface antigens [33].

The third generation comprises Phosphorodiamidate Morpholino Oligomers (PMOs)
with morpholine rings as a backbone connected with Phosphorodiamidate linkages [34],
Peptide Nucleic Acids (PNAs) replacing the ribose phosphate backbone with N-aminoethy-
lglycine polyamide [35], and Locked Nucleic Acids (LNAs) containing a methylene bridge
between 2′-O and 4′-C [36]. These recent chemical modifications have produced improved
ASOs with overall higher enzymatic stability, increased binding affinity, reduced immune
stimulation, and better pharmacokinetics [37]. Notably, one of the third-generation ASOs
currently undergoing clinical trials is Miravirsen, a LNA-ASO targeting miR-122 in the
context of hepatitis C (HCV) [38]. Efficient cellular uptake of ASOs can be achieved by
conjugating them to charged molecules like N-acetylgalactosamine (GalNAc) [39,40] or
using cell-penetrating peptides (CPP) designed for selective drug delivery [41]. Another
approach involves using unmethylated cytosine-guanine dinucleotide (CpG) oligodeoxynu-
cleotides (CpG-ODN), which trigger an innate immune response by binding to Toll-like
receptor 9 (TLR9) [42].

Drug delivery to the target site poses a significant challenge in ASO therapies, primar-
ily because ASOs must surmount biological barriers, escape lysosomal degradation, and
avoid becoming trapped in secretory vesicles [16]. To address this issue, various strategies
are currently being developed to enhance ASO stability and trafficking. As discussed,
chemical modifications have proven effective in improving ASOs’ resistance to nucleases,
binding affinity, cell penetration, and reducing off-target effects, thus enhancing the deliv-
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ery of therapeutic oligonucleotides. One promising approach to advancing drug delivery
involves conjugating ASOs with peptides, aptamers, antibodies, and N-acetylgalatosamine
(GalNAc). Peptide conjugates, for instance, can traverse cell membranes and induce
endosome disruption for efficient drug release [43]. Antibody conjugates, on the other
hand, facilitate the internalization of ASO drugs, increasing their bioavailability in target
organs [40]. Aptamers, by binding to cell surface proteins and mimicking antibody func-
tion [44], offer another avenue to improve ASO delivery. Moreover, GalNAc conjugation
enhances ASO potency and provides a reliable entry route to hepatocytes [45]. In clinical
trials targeting chronic HBV infection, Bepirovirsen was conjugated to GSK3389404, a
GalNAc conjugate, with the aim of enhancing drug delivery to hepatocytes [46].

In addition to GalNAc conjugation, researchers are also exploring nano-drug vehicles,
such as liposomes, for ASO delivery [47]. Liposomes consist of a lipid bilayer encapsulating
an aqueous compartment and have shown great promise for drug delivery due to their
ability to accumulate in diseased cell populations [48]. Liposomes have been extensively
researched and tested in clinical trials due to their stability, selective delivery capacity, low
toxicity, biocompatibility, and potential for conjugation with targeting moieties like peptides
for cell-specific drug delivery [16,49]. These advancements in drug delivery technologies
hold significant potential for improving the efficacy and safety of ASO therapies in various
diseases.

3. Mode of Action

The use of ASOs as a treatment for diseases offers significant advantages in therapeu-
tics. ASOs can be specifically modified and applied for different diseases or unique genetic
disorders, such as Milasen, which is tailored to individual patients [50]. ASOs function
through the Watson–Crick base pairing method, specifically binding to their cognate target
pre-mRNA or mRNA [51]. ASOs are classified based on their mode of action and their
dependence on the RNA-degrading enzyme RNase H. They are categorized as either RNA-
cleaving/degrading ASOs or RNA-blocking/steric-hindrance ASOs, also known as RNase
H-dependent and RNase H-independent ASOs, respectively [52].

3.1. RNA Degrading ASOs

The RNA-degrading ASOs rely on RNase H-mediated RNA degradation, involving
the binding of the target mRNA’s RNA-DNA heteroduplex to the complementary ASO [53].
This recruits the RNase H1 enzyme, which degrades the RNA in the heteroduplex. Conse-
quently, the translation of the target mRNA is inhibited, leading to the downregulation of
the corresponding protein [54,55]. FDA-approved ASOs that utilize this method include
fomivirsen, mipomersen, and inotersen [56].

3.2. RNA Blocking ASOs

RNA-blocking ASOs have been primarily used as a treatment for genetic disorders like
Duchenne Muscular Dystrophy (DMD). In this approach, ASOs repair the reading frame,
resulting in the production of a functional protein [57]. ASOs’ advanced binding affinity is
crucial in this process, as they directly bind to the specific targeted pre-mRNA or mRNA.
Recently, FDA-approved ASOs have been combined with alternative splicing mechanisms,
such as exon skipping and exon inclusion, for disease treatment. Exon skipping involves
the ASO binding to the targeted exon in the pre-mRNA, leading to its exclusion during
translation and inducing the expression of a shorter yet functional protein. This method
has been applied in eteplirsen [58], golodirsen [59], and casimersen for DMD treatment [60].
On the other hand, exon inclusion restores the full length of the mRNA, resulting in the
upregulation of the desired functional protein [61]. Nusinersen employs this method for
the treatment of SMA [56].
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4. FDA-Approved ASOs

Vitravene, also known as fomivirsen, was the pioneering ASO-approved drug, autho-
rized in 1998 for the treatment of human cytomegalovirus (HCMV) retinitis [62]. HCMV
infection can lead to vision loss, particularly in immunocompromised AIDS patients [63].
Vitravene, a 21-mer phosphorothioate oligo-2′-deoxynucleotide, was designed to be com-
plementary to its target HCMV mRNA, where it binds to the major immediate early region.
By doing so, Vitravene reduces HCMV viral replication and decreases viral load [64,65].
Vitravene treatment showed no extreme adverse effects, although some patients reported
intraocular inflammation and increased pressure. However, these symptoms were not
directly linked to Vitravene but rather to HCMV infection [66,67].

5. Therapeutic Applications

Antimicrobial oligonucleotides target the pathogens’ essential genes responsible for
replication, antibiotic resistance, and virulence. By targeting these genes, it is possible
to augment the host’s immune response, resulting in reduced pathogen replication and
proliferation.

5.1. Antibacterial Oligonucleotides

As of now, there are no FDA-approved antibacterial oligonucleotides available. How-
ever, preclinical studies have shown promising results in exploring ASOs as potential
antibacterial agents [68]. Notably, back in 1981, it was demonstrated that oligonucleosides
methylphosphonates could effectively inhibit the growth of Escherichia coli [69]. Addition-
ally, lipid oligonucleotides have been utilized to efficiently deliver the oligonucleotide
sequence, thereby decreasing the Minimum Inhibitory Concentration (MIC) and effectively
combating antibiotic resistance [70].

Pathogens have acquired resistance to the currently available antibacterial therapies,
rendering them ineffective. The possibility of using antisense therapy as an adjunct therapy
has been demonstrated in culture, where methicillin-resistant Staphylococcus aureus was
sensitized using PNAs and PS-ODNs. These strains were then found to be susceptible to
oxacillin, decreasing bacterial growth [71]. Another challenge with bacterial infections is
the formation of biofilms, which can enhance bacterial virulence due to the overexpression
of non-essential genes coding for bacterial virulence, necessitating a larger dose of treat-
ment. Targeting the genes involved in biofilm formation and inhibition was previously
discussed as advances in bacterial antisense therapy [72] and has shown effectiveness
against Haemophilus influenzae [73] and Pseudomonas aeruginosa [74]. Table 1 outlines chem-
ically modified ASOs and their bacterial target genes as antisense therapy for bacterial
infections.

Table 1. Antibacterial oligonucleotides.

Bacteria ASO Target Ref.

Staphylococcus aureus PPNA1/2 ftsZ [75]
Staphylococcus aureus PLNA787 ftsZ [76]
Staphylococcus aureus PMO gyrA [77]
Listeria monocytogenes rpoA-PNA rpoA [78]
Brucella suis polA-PNA polA [79]
Acinetobacter baumannii AcpP-PPMO acpP [80]

The peptide-conjugated PNAs’ 1 and 2 (PPNA1 and PPNA2) ASOs are complementary
to different sites of the target filamentous temperature-sensitive protein Z (ftsZ) gene, which
is critical for the replication of methicillin-resistant Staphylococcus aureus (MRSA) [75]. Both
PPNA1 ASO and PPNA2 ASO displayed bactericidal effects and inhibited the growth of
MRSA in cell culture [75] (Figure 1A1). The peptide-conjugated LNA, PLNA787 ASO, tar-
gets the ftsZ mRNA of Staphylococcus aureus [76]. Treatment with PLNA787 ASO treatment
inhibited the growth of methicillin-resistant Staphylococcus aureus in cell cultures. Moreover,
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its therapeutic impact extended to in vivo studies, as evidenced by an increased survival
rate among mice infected with the Mu50 strain of S. aureus [76] (Figure 1A2). Furthermore,
in a Staphylococcus aureus-infected cutaneous mouse wound, the use of PMO conjugates in
conjunction with a novel thermoresponsive gel delivery system targeted the essential gyrA
mRNA, resulting in decreased bacterial growth and enhanced cutaneous wound healing in
the mice [77] (Figure 1A3). The rpoA-PNA ASO, a CPP-PNA, effectively targeted the RNA
polymerase α subunit (rpoA) involved in transcription in Listeria monocytogenes [78]. By
inhibiting bacterial DNA transcription, this rpoA-PNA ASO significantly reduced bacterial
growth of L. monocytogenes in broth culture. In vivo treatment of L. monocytogenes-infected
Caenorhabditis elegans worms with rpoA-PNA resulted in a remarkable 72% growth re-
duction [78]. (Figure 1B). Similarly, the polA-PNA ASO, a CPP-PNA, effectively targeted
the DNA polymerase I (polA) gene responsible for DNA replication in Brucella suis [79].
Treatment with 12–30 µM of polA-PNA ASO inhibited the growth of Brucella suis in both
broth culture and infected macrophages [79] (Figure 1C). Additionally, the acpP-PPMO
ASO targeted the acyl carrier protein (acpP) gene involved in the fatty acid biosynthesis
of Acinetobacter baumannii. Intranasal treatment with acpP-PPMO ASO demonstrated its
bactericidal effect, significantly increasing the survival rate of A. baumannii-infected mice
while reducing inflammation and bacterial burden in the lungs [80] (Figure 1D).
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Figure 1. Antibacterial oligonucleotides targeting essential bacterial genes. (A1) PPNA1/2 ASOs
target ftsZ mRNA and inhibit the growth of methicillin-resistant Staphylococcus aureus. (A2) PLNA787
ASO binds to ftsZ mRNA of Staphylococcus aureus to inhibit its growth. (A3) PMO ASO attaches to
gyrA mRNA, causing a growth reduction in Staphylococcus aureus. (B) rpoA-PNA ASO binds to rpoA
mRNA resulting in a reduction in L. monocytogenes growth. (C) polA-PNA ASO attaches to the polA
mRNA, inhibiting the growth of Brucella suis. (D) The binding of acpP-PPMO ASO with the acpP
mRNA results in the reduction in Acinetobacter baumannii growth. Abbreviations: ftsZ, filamentous
temperature-sensitive protein Z; gyrA, gyrase A; rpoA, RNA polymerase α subunit; polA, DNA
polymerase I; acpP, acyl carrier protein. Created in BioRender.com.

5.2. Antiviral Oligonucleotides

Antiviral oligonucleotides have been extensively studied in preclinical research as a
therapeutic approach to target specific virus-specific mRNAs. Notably, previous studies
have explored the potential applications of antiviral oligonucleotides in combating viral
infections, including Dengue fever. For instance, the peptide-conjugated phosphorodiami-
date morpholino oligomer (PPMO) ASO effectively inhibited Dengue virus replication by
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blocking RNA translation and RNA synthesis [81]. Various ASOs have been employed
to treat different viral infections, leading to a notable overall decrease in viral titers, as
summarized in Table 2.

Table 2. Antiviral oligonucleotides.

Virus ASO Target Ref.

Dengue virus 3′SLT PPMO 3′-SLT [81]
Dengue virus Vivo-MO-1 3′-SLT on 3′ UTR of genome [82]
Respiratory Syncytial virus AUG-2 PPMO RSV-L mRNA [83]
Influenza P7-PMO NP-v3′ [84]
Ebola Arginine rich PPMO VP24 mRNA [85]
Hepatitis B virus Ga1Nac-LNA(SSO) HBV transcript [86]
Human Immunodeficiency virus FANA-ASO HIV-1 genome [87]

A 3′-SLT PPMO ASO was designed to target the 3′ stem-loop (3′SLT) in the Dengue
viral genome imperative for the translation and synthesis of viral RNA [88,89]. The 3′SLT
PPMO effectively reduced viral RNA levels by over 450-fold, thereby inhibiting viral trans-
lation and RNA synthesis in Baby Hamster Kidney fibroblasts (BHK) cells [81] (Figure 2A1).
Another ASO, Vivo-MO-1, effectively targeted the 3′ stem-loop (3′ SLT) on the 3′ UTR of
the Dengue viral genome, resulting in the inhibition of Dengue infection by decreasing
viral RNA levels by over 1000-fold in dendritic cells treated with ASO Vivo-MO-1 [82]
(Figure 2A2). In the context of Hepatitis B virus (HBV) infection, an LNA-single-stranded
oligonucleotide (LNA-SSO) conjugated to N-acetylgalactosamine (GalNAc) ASO was uti-
lized to target HBV transcripts in human hepatoma cell lines. The conjugation to GalNAc
aids in the specific binding to asialoglycoprotein receptor (ASGPR), which is expressed on
hepatocytes preventing the accumulation of ASO in the kidney. This led to a long-lasting
reduced expression of viral antigens (HBsAg and HBeAg) and mRNA [86] (Figure 2B).
Furthermore, promising results were achieved in treating Ebola infection in mice using a
PMO ASO conjugated with an arginine-rich peptide (PPMO). This PPMO ASO effectively
targeted the VP24 mRNA and inhibited viral replication [85]. Notably, treatment with 50
µg and 5 µg of VP24-AUG PPMO resulted in 100% and 90% protection against lethal Ebola
infection in mice, respectively [85]. (Figure 2C). Another successful example involves the
P7-PMO ASO, which targeted the 3′-terminal region of nucleoprotein viral genome RNA
(NP-v3′), displaying enhanced antiviral activity with a >85% reduction in viral Influenza
titers in infected Madin–Darby canine kidney (MDCK) cells [84] (Figure 2D). Another
successful example involved the AUG-2 PPMO ASO, designed to target the translational
start site of the RSV-L mRNA. This ASO showed significant efficacy with a >2.0 log10
decrease in RSV viral titers in infected mouse and human cell lines [83] (Figure 2E). Lastly,
the 2′-deoxy-2′-fluoroarabinonucleotide (FANA) ASO effectively targeted the conserved
regions of the HIV-1 genome, resulting in the inhibition of viral p24 replication in human
PBMCs. They further investigated the duration of the ASOs’ anti-HIV effects and noted
that treatment with FANA ASO had a prolonged viral p24 inhibition period of 13 days [87]
(Figure 2F). Finally, the 2′-deoxy-2′-fluoroarabinonucleotide (FANA) ASO effectively tar-
geted the conserved regions of the HIV-1 genome, resulting in the inhibition of viral p24
replication in human PBMCs. Investigations into the longevity of the ASO’s anti-HIV
effects revealed an impressive duration, with treatment using FANA ASO resulting in the
prolonged inhibition of viral p24 for a period of 13 days [87] (Figure 2F).
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Figure 2. Antiviral oligonucleotides targeting essential viral genes. (A1) 3′SLT PPMO ASO targets
the 3′ terminal stem-loop of the Dengue viral genome, inhibiting viral translation and RNA synthesis.
(A2) Vivo-MO-1 ASO binds to the 3′ terminal stem-loop of the Dengue viral genome and inhibits
the production of viral proteins. (B) Ga1Nac-LNA (SSO) ASO binds to the hepatitis B virus (HBV)
transcript preventing the expression of viral antigens. (C) PMO ASO conjugated to an arginine-
rich peptide (PPMO) successfully inhibited the viral replication of Ebola by attaching to the VP24
mRNA. (D) P7-PMO ASO targets the NP-v3′ site on the viral mRNA, obstructing the replication
of Ebola. (E) AUG-2 PPMO ASO binds to respiratory syncytial virus (RSV)-L mRNA leading to
reduced viral titers. (F) FANA ASO binds to the conserved regions of the HIV-1 genome, inhibiting
HIV-1 replication. Abbreviations: 3′SLT, 3′ stem loop; Ga1NAc, N-acetylgalactosamine; NP-v3′,
nucleoprotein viral genome; FANA, 2′-deoxy-2′-fluoroarabinonucleotide; HBV, Hepatitis B virus;
RSV, Respiratory syncytial virus; HIV, Human immunodeficiency virus. Created in BioRender.com.

5.3. Antiparasitic Oligonucleotides

Parasitic infections represent one of the most neglected types of infectious diseases
due to the lack of improved and updated therapies. Currently, there are no FDA-approved
antisense therapies specifically targeting parasitic infections, nor are there any ASOs in
clinical trials for such purposes. However, preclinical studies have shown promising results
using oligonucleotides to target parasitic infections, as summarized in Table 3. An excellent
example of the potential of antiparasitic applications in preclinical studies is demonstrated
by PPMOs and VMOs that target essential genes of Plasmodium falciparum, leading to re-
duced RNA expression and inhibition of parasite growth [90]. Additionally, oligonucleotide
therapy can be utilized to target genes responsible for drug resistance in the parasite. This
approach was successful in treating chloroquine-resistant Plasmodium falciparum, where
a MO conjugate was used, resulting in restored chloroquine susceptibility [90]. Table 3
outlines the various oligonucleotides and their target genes for different parasitic infections.

Table 3. Antiparasitic oligonucleotides.

Parasite ASO Target Ref.

Toxoplasma gondii GRA10-PPMO GRA10 [91]
Trypanosoma cruzi Antisense 5995 TcIP3R [92]

Plasmodium falciparum PfCRT-VMO
PfDXR-PPMO

PfCRT
PfDXR [90]

Plasmodium falciparum PNA PfSec13 [93]
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For instance, GRA10-PPMO ASO targets the GRA10 mRNA, resulting in the down-
regulation of the GRA10 granular protein and disrupting the intracellular replication of
Toxoplasma gondii in human fibroblasts [91] (Figure 3A). Furthermore, PfCRT-VMO ASO (1)
and PfDXR-PPMO ASO (2) are designed to target essential genes, PfCRT is responsible for
chloroquine resistance, and PfDXR is involved in apicoplast formation, which is crucial for
metabolic functions in Plasmodium falciparum [90]. Inhibiting the expression of the PfCRT
gene resulted in restored drug susceptibility, and treatment with 1.25 µM and 1.75 µM
of PfPMT-VMO and PfCRT-VMO, respectively, inhibited 53% of parasitic growth in the
presence of chloroquine [90] (Figure 3B1,2). Another approach involves the PNA ASO,
which targets PfSec13, a gene involved in Plasmodium falciparum proliferation. The down-
regulation of PfSec13 leads to decreased parasitic proliferation in human erythrocytes [93]
(Figure 3B3). Similarly, the antisense 5995 ASO targets the inositol 1,4,5-trisphosphate re-
ceptor (TcIP3R) of Trypanosoma cruzi, a gene that plays a role in the parasite’s replication and
virulence [92]. By treating trypomastigotes, the infective stage of T. cruzi, reduced TcIP3R
expression hampers the parasite’s ability to invade cells and replicate [92] (Figure 3C).

Cells 2023, 12, x FOR PEER REVIEW 8 of 16 
 

 

For instance, GRA10-PPMO ASO targets the GRA10 mRNA, resulting in the downreg-

ulation of the GRA10 granular protein and disrupting the intracellular replication of Toxo-

plasma gondii in human fibroblasts [91] (Figure 3A). Furthermore, PfCRT-VMO ASO (1) and 

PfDXR-PPMO ASO (2) are designed to target essential genes, PfCRT is responsible for chlo-

roquine resistance, and PfDXR is involved in apicoplast formation, which is crucial for met-

abolic functions in Plasmodium falciparum [90]. Inhibiting the expression of the PfCRT gene 

resulted in restored drug susceptibility, and treatment with 1.25 µM and 1.75 µM of PfPMT-

VMO and PfCRT-VMO, respectively, inhibited 53% of parasitic growth in the presence of 

chloroquine [90] (Figure 3B1,2). Another approach involves the PNA ASO, which targets 

PfSec13, a gene involved in Plasmodium falciparum proliferation. The downregulation of 

PfSec13 leads to decreased parasitic proliferation in human erythrocytes [93] (Figure 3B3). 

Similarly, the antisense 5995 ASO targets the inositol 1,4,5-trisphosphate receptor (TcIP3R) 

of Trypanosoma cruzi, a gene that plays a role in the parasite’s replication and virulence [92]. 

By treating trypomastigotes, the infective stage of T. cruzi, reduced TcIP3R expression ham-

pers the parasite’s ability to invade cells and replicate [92] (Figure 3C). 

 

Figure 3. Antiparasitic oligonucleotides targeting essential parasitic genes. (A) GRA10-PPMO ASO 

downregulates GRA10 expression, resulting in growth inhibition Toxoplasma gondii. (B1) PfCRT-VMO 

ASO and (B2) PfDXR-PPMO ASO target the essential genes, PfCRT and PfDXR, respectively, leading 

to growth inhibition of Plasmodium falciparum. (B3) The binding of PNA ASO and PfSec13 results in 

decreased P. falciparum proliferation. (C) Antisense 5995 ASO binds to the TcIP3R mRNA of T. cruzi, 

inhibiting cell entry and replication. Abbreviations: GRA10, dense granule protein 10; PfCRT, P. falci-

parum chloroquine resistance transporter; PfDXR, P. falciparum deoxyxylulose 5-phosphate reductoi-

somerase; TcIP3R, T. cruzi inositol 1,4,5-trisphosphate receptor. Created in BioRender.com. 

6. Anti-Mycobacterial and Host Factor Targeted ASOs for Mycobacterium Species 

Several ASOs have demonstrated successful inhibition of disease-causing genes dur-

ing Mycobacterium infections through knockdown experiments. For instance, the knock-

down of an immunoregulatory long intergenic noncoding RNA, lincRNA-MIR99AHG, 

using an LNA GapmeR-ASO, significantly reduced the intracellular growth of Mycobacte-

rium tuberculosis in murine and human macrophages [94]. In mice, intranasal administra-

tion of LNA GapmeR-ASO led to a substantial reduction in bacterial burden within the 

lungs (Figure 4A) [94]. Moreover, a phosphorothioate-modified antisense oligodeoxyribo-

nucleotide (PS-ODN) was found to inhibit the expression of inositol-1-phosphate syn-

thase, a key enzyme encoded by the inositol-1 (INO1) gene, in inositol synthesis [95]. This 

suppression resulted in a notable decrease in mycothiol levels following exposure to 20 

Figure 3. Antiparasitic oligonucleotides targeting essential parasitic genes. (A) GRA10-PPMO ASO
downregulates GRA10 expression, resulting in growth inhibition Toxoplasma gondii. (B1) PfCRT-VMO
ASO and (B2) PfDXR-PPMO ASO target the essential genes, PfCRT and PfDXR, respectively, leading
to growth inhibition of Plasmodium falciparum. (B3) The binding of PNA ASO and PfSec13 results
in decreased P. falciparum proliferation. (C) Antisense 5995 ASO binds to the TcIP3R mRNA of T.
cruzi, inhibiting cell entry and replication. Abbreviations: GRA10, dense granule protein 10; PfCRT,
P. falciparum chloroquine resistance transporter; PfDXR, P. falciparum deoxyxylulose 5-phosphate
reductoisomerase; TcIP3R, T. cruzi inositol 1,4,5-trisphosphate receptor. Created in BioRender.com.

6. Anti-Mycobacterial and Host Factor Targeted ASOs for Mycobacterium Species

Several ASOs have demonstrated successful inhibition of disease-causing genes during
Mycobacterium infections through knockdown experiments. For instance, the knockdown
of an immunoregulatory long intergenic noncoding RNA, lincRNA-MIR99AHG, using
an LNA GapmeR-ASO, significantly reduced the intracellular growth of Mycobacterium
tuberculosis in murine and human macrophages [94]. In mice, intranasal administration
of LNA GapmeR-ASO led to a substantial reduction in bacterial burden within the lungs
(Figure 4A) [94]. Moreover, a phosphorothioate-modified antisense oligodeoxyribonu-
cleotide (PS-ODN) was found to inhibit the expression of inositol-1-phosphate synthase, a
key enzyme encoded by the inositol-1 (INO1) gene, in inositol synthesis [95]. This suppres-
sion resulted in a notable decrease in mycothiol levels following exposure to 20 and 40 µM
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of the PS-ODN over a span of 6 weeks, consequently reducing the proliferation of M. tuber-
culosis. The ASO PS-ODN’s impact was remarkable, rendering the bacteria 7–9 times more
susceptible to antibiotics at the 40 µM concentration (Figure 4B) [96]. Additionally, phos-
phoryl guanidine oligo-2′-O-methylribonucleotides (2′-OMe PGOs) have demonstrated
successful penetration of Mycobacterium smegmatis and inhibited the expression of alanine
dehydrogenase, encoded by the mycobacterial ald gene. Consequently, treatment with
20 µM of these PGOs resulted in a substantial reduction in M. smegmatis growth by 54%
and 62% at 24 and 40 h, respectively, in murine macrophages (Figure 4C) [97]. These
findings showcase the versatility of ASOs as potent therapeutic agents, offering multiple
mycobacterial and host-directed targeting for combatting TB.

Cells 2023, 12, x FOR PEER REVIEW 9 of 16 
 

 

and 40 µM of the PS-ODN over a span of 6 weeks, consequently reducing the proliferation 

of M. tuberculosis. The ASO PS-ODN’s impact was remarkable, rendering the bacteria 7–9 

times more susceptible to antibiotics at the 40 µM concentration (Figure 4B) [96]. Addi-

tionally, phosphoryl guanidine oligo-2′-O-methylribonucleotides (2′-OMe PGOs) have 

demonstrated successful penetration of Mycobacterium smegmatis and inhibited the expres-

sion of alanine dehydrogenase, encoded by the mycobacterial ald gene. Consequently, 

treatment with 20 µM of these PGOs resulted in a substantial reduction in M. smegmatis 

growth by 54% and 62% at 24 and 40 h, respectively, in murine macrophages (Figure 4C) 

[97]. These findings showcase the versatility of ASOs as potent therapeutic agents, offering 

multiple mycobacterial and host-directed targeting for comba�ing TB. 

 

Figure 4. ASOs targeting host factors and essential bacterial genes. (A) The LNA GapmeR-ASO 

binds to the host lincRNA-MIR99AHG, resulting in the reduction in Mycobacterium tuberculosis in 

both murine and human macrophages. (B) PS-ODN ASO effectively targets the INO1 gene, resulting 

in reduced mycothiol levels and suppressed proliferation of M. tuberculosis. This, in turn, enhances 

the bacteria’s susceptibility to antibiotics (C) The 2′-OMe PGOs target the mycobacterial ald gene, 

leading to a significant inhibition of M. smegmatis growth within murine macrophages: LNA, locked 

nucleic acid; lincRNA-MIR99AHG, long intergenic noncoding RNA-MIR99AHG; PS-ODN, phos-

phorothioate-modified antisense oligodeoxyribonucleotide; INO1, inositol-1; M. tuberculosis, Myco-

bacterium tuberculosis; 2′-OMe PGOs, phosphoryl guanidine oligo-2′-O-methylribonucleotides; M. 

smegmatis, Mycobacterium smegmatis. Created in BioRender.com. 

7. ASOs Targeting Host Factors for Viral Infections 

Investigating potential ASO therapy targets for infectious diseases has led to a focus on 

host factors that viral pathogens manipulate for their survival. The ability of ASOs to disrupt 

viral pathogenesis by silencing essential host factors has shown great potential in inhibiting 

viral replication and propagation, providing new possibilities for the treatment of infectious 

diseases. 

ASOs can silence viral targets using steric hindrance, thereby disrupting viral patho-

genesis and rendering the virus susceptible to the host’s immune response. Figure 5 illus-

trates ASOs labelled A–F, which target different host factors responsible for viral replication 

and propagation. In the case of SARS-CoV-2 infection, the viral spike protein attaches to the 

angiotensin-converting enzyme 2 (ACE2) receptor on the host cell, enabling cellular entry 

[98]. The ACE2 ASO targets the ACE2 gene, resulting in reduced expression and preventing 

SARS-CoV-2 cellular entry and release of the viral genome [99] (Figure 5A). MicroRNA-122 

(miR-122) plays a role in the replication of the Hepatitis C virus (HCV) in infected human 

Figure 4. ASOs targeting host factors and essential bacterial genes. (A) The LNA GapmeR-ASO
binds to the host lincRNA-MIR99AHG, resulting in the reduction in Mycobacterium tuberculosis
in both murine and human macrophages. (B) PS-ODN ASO effectively targets the INO1 gene,
resulting in reduced mycothiol levels and suppressed proliferation of M. tuberculosis. This, in turn,
enhances the bacteria’s susceptibility to antibiotics (C) The 2′-OMe PGOs target the mycobacterial ald
gene, leading to a significant inhibition of M. smegmatis growth within murine macrophages: LNA,
locked nucleic acid; lincRNA-MIR99AHG, long intergenic noncoding RNA-MIR99AHG; PS-ODN,
phosphorothioate-modified antisense oligodeoxyribonucleotide; INO1, inositol-1; M. tuberculosis,
Mycobacterium tuberculosis; 2′-OMe PGOs, phosphoryl guanidine oligo-2′-O-methylribonucleotides;
M. smegmatis, Mycobacterium smegmatis. Created in BioRender.com.

7. ASOs Targeting Host Factors for Viral Infections

Investigating potential ASO therapy targets for infectious diseases has led to a focus
on host factors that viral pathogens manipulate for their survival. The ability of ASOs to
disrupt viral pathogenesis by silencing essential host factors has shown great potential in
inhibiting viral replication and propagation, providing new possibilities for the treatment
of infectious diseases.

ASOs can silence viral targets using steric hindrance, thereby disrupting viral patho-
genesis and rendering the virus susceptible to the host’s immune response. Figure 5
illustrates ASOs labelled A–F, which target different host factors responsible for viral
replication and propagation. In the case of SARS-CoV-2 infection, the viral spike pro-
tein attaches to the angiotensin-converting enzyme 2 (ACE2) receptor on the host cell,
enabling cellular entry [98]. The ACE2 ASO targets the ACE2 gene, resulting in reduced
expression and preventing SARS-CoV-2 cellular entry and release of the viral genome [99]
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(Figure 5A). MicroRNA-122 (miR-122) plays a role in the replication of the Hepatitis C
virus (HCV) in infected human Huh7 cells. The 2′-O-methylated RNA oligonucleotide
(122-2′OMe) targets miR-122, preventing the stabilization of the viral genome and hin-
dering viral replication [100] (Figure 5B). For Ebola virus, binding to Niemann–Pick C1
(NPC1) mRNA prompts the release of the ribonucleoprotein (RNP) complex responsible
for viral transcription and replication [101]. An LNA ASO that directly binds to the NPC1
mRNA inhibits membrane fusion, prevents RNP release, and reduces viral replication in
Ebola-infected murine and human cell lines [102] (Figure 5C). In the case of H1N1 influenza,
binding to the programmed cell death protein 5 (PDCD5) induces apoptosis and viral repli-
cation [103]. PROP5 ASO binds to the PDCD5 mRNA and impedes viral propagation of
H1N1 influenza [103] (Figure 5D). Hepatitis B virus (HBV) replication has been associated
with the virus binding to asialoglycoprotein receptor 1 (ASGPR1). ASODN2 ASO binds to
ASGPR1 mRNA, resulting in the inhibition of HBV replication [104] (Figure 5E). The host
factor Mammalian relative of DnaJ (MRJ/DNAJB6) is involved in both HIV-1 and respi-
ratory syncytial virus (RSV) infection. For HIV-1, MRJ promotes viral entry into the host
nucleus [100], and for RSV, it is involved in the production of viral subgenomic RNA [105].
The binding of MoMRJ ASO to the MRJ-L isoform suppresses HIV-1’s nuclear entry and
viral genome integration and inhibits RSV’s viral RNA and mRNA expression [105,106]
(Figure 5F).
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Figure 5. ASOs targeting host factors during various viral infections in the host cell. (A) ACE2
ASO binds to the ACE2 receptor, inhibiting the entry of SARS-CoV-2. (B) PNA ASO attaches to
miR-122, preventing HCV viral genome stabilization and replication. (C) LNA-PS ASO inhibits
Ebola membrane fusion and prevents ribonucleoprotein (RNP) release by binding to NPC1 mRNA.
(D) PROP5 ASO binds to PDCD5 mRNA, resulting in the inhibition of programmed cell death and
H1N1 influenza viral replication. (E) ASODN2 ASO hinders HBV replication by binding to the
ASGPR1 receptor. (F) The binding of VIVO-PMO ASO to MRJ-L isoform results in the inhibition of
HIV-1’s nuclear entry and genome integration, as well as the RSV’s viral RNA and mRNA expression.
Abbreviations: ACE2, angiotensin-converting enzyme 2; miR-122, microRNA-122; NPC1, Niemann–
Pick C1; PDCD5, programmed cell death protein 5; ASGPR1, asialoglycoprotein receptor 1; MRJ-L,
Mammalian relative of DnaJ; HCV, Hepatitis C virus. Created in BioRender.com.
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8. Advantages and Disadvantages
8.1. Advantages

Antisense therapy has revolutionized the outlook for future treatments in patients
with various diseases, offering the potential for personalized and accessible treatment
options [103]. One major advantage of this therapy lies in its simplicity and accuracy, as
it is complementary-based and requires the target mRNA sequence. This allows for the
synthesis of specific ASOs targeting known sequences of viral or bacterial mRNAs involved
in pathogenesis [107]. This approach has been particularly valuable in cases where protein-
based therapies were ineffective due to the inaccessibility of the disease target. Chemical
modifications to oligonucleotide structures have significantly improved therapy efficacy
and safety by enhancing binding affinity and reducing toxicities. Moreover, the production
time and cost-effectiveness of ASO therapy are advantageous, especially for large-scale
production, while its increased efficacy reduces the need for frequent drug administration.

8.2. Disadvantages and Improvements

Despite its promising potential, the clinical use of oligonucleotides has faced chal-
lenges. The delivery of first-generation oligonucleotides to specific organs and tissues
has been problematic due to their weight, negative charge, and instability, resulting in
poor absorption and susceptibility to nuclease degradation [108]. However, second- and
third-generation ASOs with chemical modifications, including cell-penetrating peptides,
have addressed these issues and facilitated delivery to target organs. Concerns about
off-target toxicity observed in first-generation oligonucleotides [109] have been minimized
in later generations due to improved chemical modifications, leading to reduced toxicity.
Moreover, specific oligonucleotide therapies, like small interfering RNA, have been linked
to heightened immune responses, leading to inflammatory syndromes. This phenomenon
was primarily observed in therapies using small interfering RNA that acted as TLR agonists,
resulting in clinical adverse effects [110].

9. Conclusions and Future Perspectives

Antisense therapy has undergone significant evolution over the years, with numerous
advancements aimed at enhancing its efficacy and applications in the field of health sci-
ences. The ability to modify protein expression, either by reducing or restoring it without
toxicity, has presented remarkable therapeutic possibilities for numerous diseases and
genetic disorders. Improved chemical modifications of ASOs have effectively addressed
many concerns associated with earlier first-generation oligonucleotide therapies. From the
introduction of the phosphorothioate linkage, which improved enzymatic stability, to the
conjugation of cell-penetrating peptides for enhanced cellular uptake, ASOs have become
more versatile and potent in their therapeutic potential.

The applications of ASOs in infectious diseases have been extensively explored and
discussed in this review. Most of the antimicrobials discussed have been rigorously tested
in cell cultures, mouse models, and human cell lines. Notably, one significant finding in
ASO applications is their potential as host-directed therapy. By targeting multiple host
factors involved in viral entry and replication, complementary ASOs can effectively inhibit
viral replication and growth.

ASOs offer promising prospects for actively combating emerging, re-emerging, and
multi-drug-resistant infectious diseases. However, there is still ample room for improve-
ment in most antisense therapeutics. Optimizing ASO delivery to specific target organs can
prevent undesirable accumulation in the kidney and liver, thus enhancing overall efficacy.
Novel delivery modalities for oligonucleotide therapies can further improve their effective-
ness while reducing the required drug dosage. Leveraging approved delivery strategies
used in other diseases should be thoroughly explored as they may prove advantageous.

In conclusion, ASO therapies hold tremendous potential for treating various diseases,
including those caused by bacteria, viruses, and parasites. To fully harness this potential,
addressing drug delivery challenges remains a key focus. Through ongoing research,



Cells 2023, 12, 2119 12 of 16

preclinical studies, and clinical trials, the optimization of ASO design, delivery, and person-
alized medicine can revolutionize the treatment landscape, benefiting patients worldwide
and offering new hope in the fight against infectious diseases.
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