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ABSTRACT 26 

Objectives: The slow development of major advances in drug discovery for the treatment of 27 

Mycobacterium tuberculosis (Mtb) infection have led to a compelling need for evaluation of 28 

more effective drug therapies against tuberculosis. New classes of drugs are constantly 29 

being evaluated for anti-mycobacterial activity with currently a very limited number of new 30 

drugs approved for TB treatment. Minor Groove Binders (MGBs) have previously revealed 31 

promising anti-microbial activity against various infectious agents; however have not yet 32 

been screened against Mtb.  33 

Methods: Mycobactericidal activity of 96 MGB compounds against Mtb was determined 34 

using H37Rv-GFP microplate assay. MGB hits were screened for their intracellular 35 

mycobactericidal efficacy against clinical Beijing Mtb strain HN878 in bone marrow-derived 36 

macrophages using standard colony-forming unit counting. Cell viability was assessed by 37 

CellTiter-Blue assays. Selected MGB were encapsulated into non-ionic surfactant vesicles 38 

(NIVs) for drug delivery system evaluation. 39 

Results: H37Rv-GFP screening yielded a hitlist of 7 compounds at an MIC99 between 0.39 40 

and 1.56 μM. MGB-362 and MGB-364 displayed intracellular mycobactericidal activity 41 

against Mtb HN878 at MIC50 of 4.09 μM and 4.19 μM respectively, whilst being non-toxic. 42 

Subsequent encapsulation into NIVs demonstrated a 1.6 and 2.1-fold increased intracellular 43 

mycobacterial activity, similar to that of rifampicin when compared to MGB alone formulation.  44 

Conclusions: MGBs anti-mycobacterial activities together with non-toxic properties indicate 45 

that MGB compounds constitute an important new class of drug/chemical entity, which holds 46 

promise in future anti-TB therapy. Furthermore, NIVs ability to better deliver entrapped MGB 47 

compounds to an intracellular Mtb infection has provided merit for further preclinical 48 

evaluation. 49 

50 



Introduction 51 

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), has become the 52 

top infectious killer worldwide. According to the 2016 World Health Organization (WHO) 53 

Global Tuberculosis Report,1 TB killed approximately 1.8 million people in 2015, up from 1.5 54 

million deaths in 2014.2 The current six-month treatment regimen for drug-susceptible Mtb, 55 

although still effective in most cases, is gradually becoming ineffective due to increasing 56 

resistance against the drugs used to treat TB.3 Several advances have been made in the 57 

field of TB drug discovery, spearheaded by global partnerships. For example, the Global 58 

Alliance for TB Drug Development currently manages the largest array of novel anti-TB drug 59 

compounds and novel regimens for MDR and XDR TB.4 Other initiatives to eradicate TB 60 

include the STOP TB partnership that includes an international working group to develop 61 

new TB drugs.5 Furthermore, several large consortia of pharmaceutical companies (TB Drug 62 

Accelerator) and academia (MM4TB) drive the discovery of new TB drugs.6 Despite the 63 

progress in the pipeline for new diagnostics, drugs, regimens, and vaccines, research 64 

remains relentlessly underfunded. As a consequence, only a few new drugs have been 65 

approved for clinical use, i.e. delamanid, bedaquiline and pretomanid, and only ten new 66 

drugs are in advanced phases of clinical trials as of 2016.7, 8 With the slow development of 67 

major advances in anti-mycobacterial drug discovery and the emergence of multi-drug-and 68 

extremely drug-resistant TB, there is an urgent need for the development of more effective 69 

therapies and formulations of existing drugs for the treatment of TB.8, 9 In the area of novel 70 

therapeutics discovery, progress has been made in developing new drug classes such as 71 

benzothiazinones, which inhibit cell wall arabinan synthesis, and imidazopyridines, which 72 

inhibit respiratory chain ATP synthesis.10, 11 Minor Groove Binder compounds (MGBs) have 73 

revealed promising antibacterial properties, but have not yet been investigated for their anti-74 

mycobacterial activity against Mtb in vitro. 75 

 Derived from the natural product distamycin, MGBs are a class of compounds that 76 

selectively bind to the minor groove of bacterial DNA with their helical structure matching 77 



that of DNA.12 Most often, proteins binding to bacterial DNA bind to the major groove, 78 

leaving the minor groove exposed and thus, a vacant target for MGBs. Natural forms of 79 

MGBs are currently used in clinical treatment of disease. For example, aromatic diamidines, 80 

such as pentamidine,13, 14 and berenil,15 known to bind to the minor groove at adenosine-81 

thymine tracts, have been administered clinically against human African trypanosomiasis 82 

and Pneumocystis carinii pneumonia.16-18 MGBs display a wide variety of activity profiles 83 

against many infectious organisms evaluated, including Gram-positive bacteria,19 84 

Mycobacterium aurum,20 chloroquine sensitive and resistant Plasmodium falciparum,21 and 85 

Trypanosoma brucei brucei.17 In partnership with MGB-Biopharma, one MGB compound has 86 

successfully completed phase I clinical trials for the treatment of Clostridium difficile 87 

infections.22 We recently screened a limited number of MGBs for their anti-mycobacterial 88 

activity against the laboratory Mtb H37Rv strain with MIC99 reaching 3.1 uM.23 We have now 89 

further extended this work by producing more active MGBs with higher MIC99 values against 90 

Mtb H37Rv. In addition we examined the anti-mycobacterial activity of MGBs against 91 

intracellular clinical HN878 Beijing strain of Mtb and evaluated the effect of MGBs exposure 92 

on cell viability in macrophages.  93 

 Oral drug administration has various limitations such as drug inefficiency resulting 94 

from drug insolubility caused by gastric low pH or poor absorbance in the gastrointestinal 95 

tract. However, an effective drug delivery system can improve drug retention at the site of 96 

infection. Therefore, an ability to deliver the drug to the site of infection may provide a 97 

sustained drug concentration enabling increased effectiveness of a drug against its target. In 98 

the case of pulmonary TB treatment, oral drug administration leads to high systemic 99 

concentrations of the drugs with associated side effects such as liver toxicity and 100 

cytotoxicity, amongst others.24 Ultimately, the drawbacks associated with the oral 101 

administration of antibiotics laid the foundation for the development of innovative drug 102 

delivery approaches. The use of liposomes as a drug delivery system has been previously 103 

reported to reduce microbial drug resistance through faster drug delivery and increasing the 104 

antimicrobial drug concentration thereby preventing microbial drug efflux pump activity.25 105 



Liposome encapsulated drugs kill microbes faster before microbial mutations can develop. 106 

For example the incorporation of the antibiotic levofloxacin into liposomes improved the anti-107 

mycobacterial activity to kill Mtb strain resistant to levofloxacin.26 Other drug delivery 108 

systems such as non-ionic surfactant vesicles (NIV) have the ability to encapsulate both 109 

hydrophobic and hydrophilic drugs for direct delivery to the site of infection.27 NIVs are small 110 

colloidal particles made of a non-aqueous, non-ionic surfactant bilayer that surrounds a 111 

central aqueous compartment. They are thermodynamically stable, easily manufactured and 112 

do not require special storage conditions. One of the major advantages of NIVs is that they 113 

are able to entrap different types of drug substances and can have their size altered. Their 114 

capacity to improve the delivery of small molecules is an important trait that allows for 115 

precise targeting of deposition of particles within the respiratory tract. Previous studies have 116 

shown NIVs to be a promising inhalable drug delivery system against pulmonary 117 

aspergillosis with aerosolized amphotericin B (AMB)-NIV administration reducing fungal lung 118 

burden when compared to AMB solution only.28 More recent studies are showing 119 

antibacterial action of moxiflacin29 and cefixime30 and antiviral action of nevirapine31 in NIV 120 

formulations. Although many different drug delivery systems have been utilised to entrap 121 

first-line TB drugs,32 only a few have systematically explored their anti-mycobacterial activity 122 

against Mtb and against intracellular Mtb in infected primary macrophages. Thus, we have 123 

investigated the use of NIVs as a drug delivery system on the improvement of delivery and 124 

efficacy of novel MGB compounds to Mtb-infected macrophages.  125 



Materials and methods 126 

Minor Groove Binder compounds 127 

MGB compounds were synthesized using distamycin template, a natural product with known 128 

infective properties as previously reported.17, 23, 33 Alterations of the head, tail, side chains 129 

and body resulted in a number of diverse compounds with later synthesis driven by acquired 130 

screening data (Table S1). MGBs were re-suspended in DMSO to a concentration of 1.25 131 

mM and were stored at -80˚C. 132 

 133 

Preparation of compounds and non-ionic surfactant vesicles 134 

MGB compounds (Stock: 1.25 mM) and rifampicin (Stock: 20 mM) were diluted to a starting 135 

concentration of 50 μM followed by 2-fold dilutions in 7H9 broth medium or DMEM to yield 136 

required screening range. Freeze dried NIVs were prepared as previously described28 and 137 

rehydrated in DMEM + 10% FCS (Gibco, Thermofisher Scientific, USA) to a NIV 138 

concentration range of 23-5000 μM (empty NIV) and subsequently added to bone marrow-139 

derived macrophages (BMDMs) in order to assess cell viability through CellTiter-Blue 140 

(Promega, Wisconsin, USA) assay with fluorescence detection at (544ex/590em nm). 141 

Subsequently, drug-NIV solutions were prepared in DMEM + 10% FCS at 2:5 molar ratio 142 

(MGB: NIV) at compound two-fold serial dilution range from 1.56 to 12.5 μM (3.91-31.25 μM 143 

NIV) to assess cell viability and intracellular anti-mycobacterial activity. Two-fold serial drug 144 

dilution was performed as previously reported in other drug screening studies.34  145 

 146 

H37Rv-GFP microplate screening assay 147 

MGB compounds were screened for their anti-mycobacterial activity using 96-well, black 148 

clear flat-bottom microplates (Greiner Bio-One, Germany) as previously reported.35, 36 Single 149 

cell suspension of H37Rv-GFP from frozen stock with working concentration of 1x106 150 

cfu/mL, was prepared in Middlebrook 7H9 supplemented with 25 mg/l kanamycin, 10% 151 

Middlebrook OADC (v/v) and 0.05% tween 80 (w/v). 100 μL of H37Rv-GFP at a 152 



concentration of 1x105 cfu/well was added to each experimental well. 100 μL of drug 153 

compounds prepared in 7H9 broth supplemented with 25 mg/L kanamycin to generate 154 

0.195-50 μM screening range, was added to well containing H37Rv-GFP for final screening 155 

range of 0.0977-25 μM. Wells containing compound only at the highest screening 156 

concentration were used to detect autofluorescence of compounds and broth (vehicle 157 

control). Fluorescence (485ex /520em nm) was measured at designated time points; days 0, 4, 158 

8, 10 and 12 with BMG Labtech Omega Plate Reader (Germany). The addition of sterile 159 

water to the outer wells of each plate served to minimize the evaporation. Time intervals 160 

were selected as previously reported in other drug screening studies.36 161 

 162 

Bone marrow-derived macrophages generation and Mtb infection  163 

BMDMs were generated from 8-12 week old C57BL/6 mice as previously reported.37  After 164 

differentiation, BMDMs were plated into 96-well plates (Nunc, Denmark) at 2 x 105 cells per 165 

well. Following overnight adherence, BMDMs were then infected with Mtb HN878 (MOI=5) 166 

and cultured at 37˚C under 5% CO2 for 4 hours. BMDMs were washed once with pre-167 

warmed culture media to remove extracellular bacteria or lysed and lysates plated on 7H10 168 

agar plates supplemented with 10% OADC and 0.5% glycerol for cfu counting to determine 169 

bacilli uptake. Drug compounds prepared in DMEM media supplemented with 10% FCS at 170 

defined concentrations were added to infected BMDMs to determine anti-mycobacterial 171 

activity and cell viability. After 5 days of culture, cells were lysed for cfu plating or assessed 172 

for cell viability by CellTiter-Blue assay. 173 

 174 

Statistical analysis 175 

All data were analysed using R, a student t-test (two-tailed with equal variance) or unless 176 

otherwise stated in figure legends. A *p value of less 0.05 was considered significant, with 177 

**p < 0.01 and ***p < 0.001.  178 



Results 179 

Minimum inhibitory concentration (MIC99) of MGB compounds against H37Rv-180 

GFP 181 

We screened 96 MGBs for their anti-mycobacterial activity against GFP-labelled H37Rv Mtb 182 

in liquid broth culture using a 96-well plate assay (Table 1). Relative fluorescence was 183 

measured at 0, 4, 8, 10 and 12 days in broth culture of MGBs (serially diluted from 25 µM to 184 

0.19 μM) to determine the minimum inhibitory concentration (MIC99) of MGBs required to 185 

eradicate 99% of Mtb (Figure 1). Hit compounds, defined as previously reported,38 were 186 

identified as drugs that were active at or below the threshold concentration of 3.12 μM. A 187 

hitlist of 7 compounds were identified with an MIC99 of 1.56 μM or less (Figure 1 and Table 188 

1). Rifampicin, which had an MIC of 0.0977 μM, was used as the positive control. The 189 

selected hit compounds were MGBs 362, 368, 361, 365, 359, 364 and 367 with MIC99 range 190 

(0.391-1.56 μM) and therefore were identified for subsequent intracellular anti-191 

mycobactericidal activity screening. 192 

 193 

Intracellular drug activity against clinical Mtb and macrophage cell viability  194 

The ability of anti-TB drug compounds to penetrate macrophages and induce 195 

mycobactericidal activity, while being non-toxic to the macrophages, is a salient property 196 

sought after in TB drug development. Hence, BMDMs were exposed to serial MGB drug 197 

concentrations from 1.56 to 12.5 μM to evaluate their anti-mycobacterial activity against the 198 

clinical Mtb strain HN878, after 5 days of infection. Compounds were screened for the 199 

concentration which eradicated 50% of bacilli (MIC50, Figure 2A). Two of the 7 hit 200 

compounds identified from screening studies against Mtb in Figure 1 had good intracellular 201 

mycobacterial killing efficacy against Mtb-infected macrophages, with MIC50 values of 4.09 202 

μM (MGB 362) and 4.19 μM (MGB 364). Rifampicin, selected as a positive control, had a 203 

MIC50 of 1.7 μM. CellTiter-Blue cell viability assay was performed to assess for macrophage 204 



cell viability in MGBs-treated BMDMs after 5 days of exposure (Figure 2B). MGB 362 and 205 

364 and rifampicin had no significant effect on macrophage viability at the respective 206 

intracellular drug activity MIC50 concentrations (Figure 2B). These data suggests that MGB 207 

362 and 364 have an efficient intracellular anti-mycobacterial activity against Mtb while being 208 

non-toxic to the host cells. 209 

 210 

MBGs-NIV encapsulation increased intracellular drug activity against clinical 211 

strain of Mtb 212 

We next investigated whether encapsulating our hit MGB compounds into NIVs, a drug 213 

delivery system that was previously reported to improve drug delivery of amphotericin B to 214 

macrophages,28 would improve MGBs drug efficacy against the intracellular clinical HN878 215 

Mtb strain. We demonstrated that encapsulating MGBs into NIVs improved the intracellular 216 

anti-mycobacterial abilities by 2.1-fold for MGB 362, and 1.6-fold for MGB 364 in Mtb 217 

HN878-infected BMDMs, displaying a significant cfu reduction (P < 0.01) compared to 218 

controls (Figure 3A). The anti-mycobacterial killing activity of MGB 362-NIV and MGB 364-219 

NIV were similar to that of rifampicin. MGB-NIV 364 displayed a significant decreased cfu 220 

counts (P < 0.033) when compared to MGB alone. Furthermore, Mtb-infected macrophages 221 

were viable following MGB-NIV treatment (Figure 3B). Treatment with NIV-alone also had no 222 

significant effect on macrophage viability (data not shown). These results demonstrate that 223 

NIVs can act as a suitable delivery system by transporting MGB inside macrophages, the 224 

target cells for Mtb.  225 



Discussion 226 

MGB compounds have shown great potential for their use as antibacterial therapeutic 227 

agents.33 However, their activity against Mtb remains unknown. Here, we demonstrated the 228 

anti-mycobacterial (MIC99) properties of MGBs against Mtb (H37Rv-GFP) with a reliable 229 

screening method that enables the detection of most active compounds,39 using rifampicin 230 

as a positive control. All of the active MGB compounds belong to the well-established 231 

alkene-linked minor groove binder family discovered at the University of Strathclyde with 232 

high killing activities against different pathogens as previously reported.17, 19-21, 23, 33 Since the 233 

primary binding sites of all of these MGBs in the DNA minor groove are AT rich regions it is 234 

unlikely that target sequence specificity is responsible for the selectivity observed. This is 235 

true also for the active compounds against Mtb described here. However, it is more likely 236 

that activity and selectivity against a particular pathogen is caused by differential access to 237 

cells caused by differing cell wall and cell membrane structures in a way that with the current 238 

state of knowledge is idiosyncratic and unpredictable.33 What can be reliably stated is that 239 

the alkene-linked compounds are significantly the most biologically active of the Strathclyde 240 

MGB family. In general, MGBs with the most significant antibacterial activity possess a range 241 

of different tail groups, all of which are exemplified within the set in our screen. However, all 242 

of the most active MGBs identified in this study possess an amidine-containing tail group, 243 

which perhaps suggests an important role of tail group pKa for targeting mycobacteria. 244 

Screening of MGB compounds in the context of their cell viability and anti-245 

mycobacterial activity against intracellular clinical Mtb strain HN878 have identified two 246 

compounds with promising results, giving a hit rate of 2.1% (2/96). In most studies the hit 247 

rate for hit compounds is in the order of 1%, in-line with previous studies.40 These findings 248 

however warrant in vivo testing which aims to allow for better clinical therapeutic translation 249 

of the findings. The use of non-ionic surfactant vesicles (NIVs) has been demonstrated 250 

repeatedly in literature before and constitutes a prominent focus within current Mtb research 251 

in order to combat the infection.27, 41 NIVs given by nebulisation delivered amphotericin B to 252 



the lungs and liver with significantly improved treatment outcome when compared to AMB 253 

solution against pulmonary aspergillosis and visceral leishmaniasis.28 Our investigation of 254 

NIVs as a delivery device indeed demonstrate that NIVs can be used to enhance the efficacy 255 

of MGB compounds against HN878 in infected BMDMs whilst not increasing the toxicity of 256 

the drug to BMDMs. MGB contain hydrophobic head groups12 which allows for encapsulation 257 

into NIV. Liposomes have previously been reported to encapsulate an alkyl derivative of 258 

distamycin A42 which are naturally occurring backbones for MGB compound synthesis.  259 

NIVs ability to trap the drug within its hydrophilic/-phobic compartment allows the 260 

drug to be taken up by phagocytosis by the infected macrophage, thereby transporting the 261 

drug to the site of infection. Using NIV drug formulations resulted in higher drug levels 262 

compared to similar treatment with drug solution at the site of infection after treatment by the 263 

pulmonary or intravenous routes for water soluble43, 44 and lipid soluble drugs28. Studies in 264 

dogs treated by the intravenous route with a sodium stibogluconate-dextran (SSG)-NIV 265 

formulation increased the elimination half-life and the volume of distribution at steady state 266 

compared to SSG-dextran solution.45 Therefore NIV-MGB formulation can be a feasible 267 

pulmonary treatment for Mtb.  268 

 In conclusion, this study showed that MGBs constitute an important new class of 269 

drug/chemical entity with favourable anti-mycobacterial activity and holds promise in future 270 

anti-TB therapy. Furthermore, we demonstrate that NIVs contribute to better delivery of 271 

drugs to an intracellular infection and secondly act as a delivery device for entrapped MGB 272 

compounds and lastly serve as the initial step into future research of targeted delivery of 273 

entrapped drug to Mtb-infected cells.  274 
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Table 1. MIC99 of all screened MGBs against H37Rv-GFP. 7 hits were identified out of 96 396 

MGBs screened. MGBs marked with asterisk symbols were previously screened as 397 

reported.23     398 

 399 

Compound MIC99 Compound MIC99 Compound MIC99 

Rifampicin 0.0977 371 25 235 >25 
362 0.391 372 25 245 >25 

368 0.391 373 25 246 >25 

361 0.781 374 25 247 >25 

365 0.781 381 25 248 >25 

359 1.56 1 >25 270 >25 

364 1.56 2 >25 271 >25 

367 1.56 9 >25 283 >25 

353* 3.12 12 >25 286 >25 

354* 3.12 74* >25 287 >25 

391 3.12 85 >25 288 >25 

263 6.25 92 >25 289 >25 

343 6.25 114 >25 300 >25 

385 6.25 121 >25 303 >25 

386 6.25 122 >25 304 >25 

351* 12.5 123 >25 305 >25 

352* 12.5 124 >25 306 >25 

376 12.5 131 >25 322 >25 

377 12.5 134 >25 323 >25 

378 12.5 147 >25 324* >25 

379 12.5 154 >25 325 >25 

380 12.5 176 >25 329* >25 

383 12.5 185 >25 331* >25 

387 12.5 187 >25 332* >25 

390 12.5 188 >25 333* >25 

282 12.5 - 25 192 >25 334* >25 

4* 25 210 >25 335* >25 

116 25 212 >25 336* >25 

164 25 213 >25 338* >25 

292 25 214 >25 356 >25 

317* 25 222 >25 357 >25 
330* 25 234 >25 358 >25 

337 25     
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Figure 1. Screening of anti-mycobacterial activity of MGB compounds against H37Rv-GFP. 449 
Direct antimicrobial activity of MGB compounds at the drug concentration range of 0.195 - 25 450 
μM was tested against H37Rv-GFP (1x105 cfu/well) in 7H9 liquid broth culture using 451 
microplate assay. The anti-mycobacterial activity of MGB treatment on H37Rv-GFP was 452 
determined at a concentration-dependent manner by measuring fluorescence (485ex/520em 453 
nm) on days 0, 4, 8, 10 and 12. Data was corrected for background 7H9 fluorescence. Data 454 
show mean ± SEM of duplicates. 455 



 456 
 457 
 458 
 459 
 460 
 461 
 462 
 463 
 464 
 465 
 466 
 467 
 468 
 469 
 470 
 471 
 472 
 473 
 474 
 475 
 476 
 477 
 478 
 479 
 480 
 481 
 482 
 483 
 484 
 485 
 486 
 487 
 488 
 489 
 490 
 491 
 492 
 493 
 494 
 495 
 496 
Figure 2. MIC50 of MGB compounds in HN878 Mtb-infected BMDMs and cell viability. A) The 497 
intracellular anti-mycobacterial activities of MGBs (1.5625-12.5 μM) and rifampicin (0.3906-498 
3.125 μM) were assessed by counting cfu at the respective concentration at 5 days post Mtb 499 
HN878 infection. MIC50 values of each drug compound were identified in GraphPad Prism by 500 
non-linear regression analysis. B) Macrophage cell viability was determined at 5 days of 501 
MGB compound exposure and measured by CellTiter-Blue assay with fluorescence 502 
detection at (544ex/590em nm). Data were corrected for background culture medium 503 
fluorescence and are shown mean ± SEM, representative of triplicates. Two-tailed Student’s 504 
t-test, *p < 0.05, **p < 0.01, *** p < 0.001 compared to control.  505 
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Figure 3. MGBs-NIV formulation intracellular mycobacterial activity in HN878 Mtb-infected 521 
BMDMs and cell viability. A) The intracellular anti-mycobacterial activity of MGBs only, 522 
MGBs-NIV formulation and rifampicin was determined in comparison to control (no drug 523 
treatment). Cfu was determined at 5 days post Mtb HN878 infection. B) Macrophage cell 524 
viability was determined at 5 days post Mtb HN878 infection and measured by CellTiter-Blue 525 
assay with fluorescence detection at (544ex/590em nm). Data were corrected for background 526 
culture media fluorescence and are shown as show mean ± SD, representative of triplicates. 527 
Two-tailed Student’s t-test, *p < 0.05, ** p < 0.01, *** p < 0.001 compared to control. 528 


