122 research outputs found

    The impact of deep-sea fisheries and implementation of the UNGA Resolutions 61/105 and 64/72. Report of an international scientific workshop

    Get PDF
    The scientific workshop to review fisheries management, held in Lisbon in May 2011, brought together 22 scientists and fisheries experts from around the world to consider the United Nations General Assembly (UNGA) resolutions on high seas bottom fisheries: what progress has been made and what the outstanding issues are. This report summarises the workshop conclusions, identifying examples of good practice and making recommendations in areas where it was agreed that the current management measures fall short of their target

    Out of Their Depth? Isolated Deep Populations of the Cosmopolitan Coral Desmophyllum dianthus May Be Highly Vulnerable to Environmental Change

    Get PDF
    Deep sea scleractinian corals will be particularly vulnerable to the effects of climate change, facing loss of up to 70% of their habitat as the Aragonite Saturation Horizon (below which corals are unable to form calcium carbonate skeletons) rises. Persistence of deep sea scleractinian corals will therefore rely on the ability of larvae to disperse to, and colonise, suitable shallow-water habitat. We used DNA sequence data of the internal transcribed spacer (ITS), the mitochondrial ribosomal subunit (16S) and mitochondrial control region (MtC) to determine levels of gene flow both within and among populations of the deep sea coral Desmophyllum dianthus in SE Australia, New Zealand and Chile to assess the ability of corals to disperse into different regions and habitats. We found significant genetic subdivision among the three widely separated geographic regions consistent with isolation and limited contemporary gene flow. Furthermore, corals from different depth strata (shallow <600 m, mid 1000–1500 m, deep >1500 m) even on the same or nearby seamounts were strongly differentiated, indicating limited vertical larval dispersal. Genetic differentiation with depth is consistent with the stratification of the Subantarctic Mode Water, Antarctic Intermediate Water, the Circumpolar Deep and North Pacific Deep Waters in the Southern Ocean, and we propose that coral larvae will be retained within, and rarely migrate among, these water masses. The apparent absence of vertical larval dispersal suggests deep populations of D. dianthus are unlikely to colonise shallow water as the aragonite saturation horizon rises and deep waters become uninhabitable. Similarly, assumptions that deep populations will act as refuges for shallow populations that are impacted by activities such as fishing or mining are also unlikely to hold true. Clearly future environmental management strategies must consider both regional and depth-related isolation of deep-sea coral populations

    A citizen science approach: A detailed ecological assessment of subtropical reefs at point lookout, Australia

    Get PDF
    Subtropical reefs provide an important habitat for flora and fauna, and proper monitoring is required for conservation. Monitoring these exposed and submerged reefs is challenging and available resources are limited. Citizen science is increasing in momentum, as an applied research tool and in the variety of monitoring approaches adopted. This paper aims to demonstrate an ecological assessment and mapping approach that incorporates both top-down (volunteer marine scientists) and bottom-up (divers/community) engagement aspects of citizen science, applied at a subtropical reef at Point Lookout, Southeast Queensland, Australia. Marine scientists trained fifty citizen scientists in survey techniques that included mapping of habitat features, recording of substrate, fish and invertebrate composition, and quantifying impacts (e.g., occurrence of substrate damage, presence of litter). In 2014 these volunteers conducted four seasonal surveys along semi-permanent transects, at five sites, across three reefs. The project presented is a model on how citizen science can be conducted in a marine environment through collaboration of volunteer researchers, non-researchers and local marine authorities. Significant differences in coral and algal cover were observed among the three sites, while fluctuations in algal cover were also observed seasonally. Differences in fish assemblages were apparent among sites and seasons, with subtropical fish groups observed more commonly in colder seasons. The least physical damage occurred in the most exposed sites (Flat Rock) within the highly protected marine park zones. The broad range of data collected through this top-down/bottomup approach to citizen science exemplifies the projects' value and application for identifying ecosystem trends or patterns. The results of the project support natural resource and marine park management, providing a valuable contribution to existing scientific knowledge and the conservation of local reefs

    A short-term in situ CO2 enrichment experiment on Heron Island (GBR)

    Get PDF
    Ocean acidification poses multiple challenges for coral reefs on molecular to ecological scales, yet previous experimental studies of the impact of projected CO2 concentrations have mostly been done in aquarium systems with corals removed from their natural ecosystem and placed under artificial light and seawater conditions. The Coral–Proto Free Ocean Carbon Enrichment System (CP-FOCE) uses a network of sensors to monitor conditions within each flume and maintain experimental pH as an offset from environmental pH using feedback control on the injection of low pH seawater. Carbonate chemistry conditions maintained in the −0.06 and −0.22 pH offset treatments were significantly different than environmental conditions. The results from this short-term experiment suggest that the CP-FOCE is an important new experimental system to study in situ impacts of ocean acidification on coral reef ecosystems

    Coral Uptake of Inorganic Phosphorus and Nitrogen Negatively Affected by Simultaneous Changes in Temperature and pH

    Get PDF
    The effects of ocean acidification and elevated seawater temperature on coral calcification and photosynthesis have been extensively investigated over the last two decades, whereas they are still unknown on nutrient uptake, despite their importance for coral energetics. We therefore studied the separate and combined impacts of increases in temperature and pCO2 on phosphate, ammonium, and nitrate uptake rates by the scleractinian coral S. pistillata. Three experiments were performed, during 10 days i) at three pHT conditions (8.1, 7.8, and 7.5) and normal temperature (26°C), ii) at three temperature conditions (26°, 29°C, and 33°C) and normal pHT (8.1), and iii) at three pHT conditions (8.1, 7.8, and 7.5) and elevated temperature (33°C). After 10 days of incubation, corals had not bleached, as protein, chlorophyll, and zooxanthellae contents were the same in all treatments. However, photosynthetic rates significantly decreased at 33°C, and were further reduced for the pHT 7.5. The photosynthetic efficiency of PSII was only decreased by elevated temperature. Nutrient uptake rates were not affected by a change in pH alone. Conversely, elevated temperature (33°C) alone induced an increase in phosphate uptake but a severe decrease in nitrate and ammonium uptake rates, even leading to a release of nitrogen into seawater. Combination of high temperature (33°C) and low pHT (7.5) resulted in a significant decrease in phosphate and nitrate uptake rates compared to control corals (26°C, pHT = 8.1). These results indicate that both inorganic nitrogen and phosphorus metabolism may be negatively affected by the cumulative effects of ocean warming and acidification

    Desmophyllum dianthus (Esper, 1794) in the scleractinian phylogeny and its intraspecific diversity

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 7 (2012): e50215, doi:10.1371/journal.pone.0050215.The cosmopolitan solitary deep-water scleractinian coral Desmophyllum dianthus (Esper, 1794) was selected as a representative model species of the polyphyletic Caryophylliidae family to (1) examine phylogenetic relationships with respect to the principal Scleractinia taxa, (2) check population structure, (3) test the widespread connectivity hypothesis and (4) assess the utility of different nuclear and mitochondrial markers currently in use. To carry out these goals, DNA sequence data from nuclear (ITS and 28S) and mitochondrial (16S and COI) markers were analyzed for several coral species and for Mediterranean populations of D. dianthus. Three phylogenetic methodologies (ML, MP and BI), based on data from the four molecular markers, all supported D. dianthus as clearly belonging to the “robust” clade, in which the species Lophelia pertusa and D. dianthus not only grouped together, but also shared haplotypes for some DNA markers. Molecular results also showed shared haplotypes among D. dianthus populations distributed in regions separated by several thousands of kilometers and by clear geographic barriers. These results could reflect limited molecular and morphological taxonomic resolution rather than real widespread connectivity. Additional studies are needed in order to find molecular markers and morphological features able to disentangle the complex phylogenetic relationship in the Order Scleractinia and to differentiate isolated populations, thus avoiding the homoplasy found in some morphological characters that are still considered in the literature.This study was funded by CTM2009-00496 and CGL2011-23306 projects of the “Ministerio de Ciencia e Innovación” (Spain). Research at sea was partly supported by the European Commission F. P.VI Project HERMES Contract No. GOCE-CT-2005-511234-1) and the EU F.P. VII Project HERMIONE(contract number no. 226354)

    Ocean Acidification at High Latitudes: Potential Effects on Functioning of the Antarctic Bivalve Laternula elliptica

    Get PDF
    Ocean acidification is a well recognised threat to marine ecosystems. High latitude regions are predicted to be particularly affected due to cold waters and naturally low carbonate saturation levels. This is of concern for organisms utilising calcium carbonate (CaCO3) to generate shells or skeletons. Studies of potential effects of future levels of pCO2 on high latitude calcifiers are at present limited, and there is little understanding of their potential to acclimate to these changes. We describe a laboratory experiment to compare physiological and metabolic responses of a key benthic bivalve, Laternula elliptica, at pCO2 levels of their natural environment (430 µatm, pH 7.99; based on field measurements) with those predicted for 2100 (735 µatm, pH 7.78) and glacial levels (187 µatm, pH 8.32). Adult L. elliptica basal metabolism (oxygen consumption rates) and heat shock protein HSP70 gene expression levels increased in response both to lowering and elevation of pH. Expression of chitin synthase (CHS), a key enzyme involved in synthesis of bivalve shells, was significantly up-regulated in individuals at pH 7.78, indicating L. elliptica were working harder to calcify in seawater undersaturated in aragonite (ΩAr = 0.71), the CaCO3 polymorph of which their shells are comprised. The different response variables were influenced by pH in differing ways, highlighting the importance of assessing a variety of factors to determine the likely impact of pH change. In combination, the results indicate a negative effect of ocean acidification on whole-organism functioning of L. elliptica over relatively short terms (weeks-months) that may be energetically difficult to maintain over longer time periods. Importantly, however, the observed changes in L. elliptica CHS gene expression provides evidence for biological control over the shell formation process, which may enable some degree of adaptation or acclimation to future ocean acidification scenarios

    The impact of deep-sea fisheries and implementation of the UNGA Resolutions 61/105 and 64/72. Report of an international scientific workshop, National Oceanography Centre, Southampton

    Get PDF
    The scientific workshop to review fisheries management, held in Lisbon in May 2011, brought together 22 scientists and fisheries experts from around the world to consider the United Nations General Assembly (UNGA) resolutions on high seas bottom fisheries: what progress has been made and what the outstanding issues are. This report summarises the workshop conclusions, identifying examples of good practice and making recommendations in areas where it was agreed that the current management measures fall short of their target.Peer reviewe

    Acclimatization of the crustose coralline alga Porolithon onkodes to variable pCO2

    Get PDF
    Ocean acidification (OA) has important implications for the persistence of coral reef ecosystems, due to potentially negative effects on biomineralization. Many coral reefs are dynamic with respect to carbonate chemistry, and experience fluctuations in pCO2 that exceed OA projections for the near future. To understand the influence of dynamic pCO2 on an important reef calcifier, we tested the response of the crustose coralline alga Porolithon onkodes to oscillating pCO2. Individuals were exposed to ambient (400 ??atm), high (660 ??atm), or variable pCO2 (oscillating between 400/660 ??atm) treatments for 14 days. To explore the potential for coralline acclimatization, we collected individuals from low and high pCO2 variability sites (upstream and downstream respectively) on a back reef characterized by unidirectional water flow in Moorea, French Polynesia. We quantified the effects of treatment on algal calcification by measuring the change in buoyant weight, and on algal metabolism by conducting sealed incubations to measure rates of photosynthesis and respiration. Net photosynthesis was higher in the ambient treatment than the variable treatment, regardless of habitat origin, and there was no effect on respiration or gross photosynthesis. Exposure to high pCO2 decreased P. onkodes calcification by >70%, regardless of the original habitat. In the variable treatment, corallines from the high variability habitat calcified 42% more than corallines from the low variability habitat. The significance of the original habitat for the coralline calcification response to variable, high pCO2 indicates that individuals existing in dynamic pCO2 habitats may be acclimatized to OA within the scope of in situ variability. These results highlight the importance of accounting for natural pCO2 variability in OA manipulations, and provide insight into the potential for plasticity in habitat and species-specific responses to changing ocean chemistry.Funding was provided by grants from the National Science Foundation (OCE-0417412, OCE-10-26852, OCE-1041270) and gifts from the Gordon and Betty Moore Foundation. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript
    corecore