278 research outputs found

    Sulfuric acid and hydrogen peroxide surface passivation effects on AlGaN/GaN high electron mobility transistors

    Get PDF
    In this work, we have compared SiNx passivation, hydrogen peroxide, and sulfuric acid treatment on AlGaN/GaN HEMTs surface after full device fabrication on Si substrate. Both the chemical treatments resulted in the suppression of device pinch-off gate leakage current below 1 μA/mm, which is much lower than that for SiNx passivation. The greatest suppression over the range of devices is observed with the sulfuric acid treatment. The device on/off current ratio is improved (from 104–105 to 107) and a reduction in the device sub-threshold (S.S.) slope (from ∼215 to 90 mV/decade) is achieved. The sulfuric acid is believed to work by oxidizing the surface which has a strong passivating effect on the gate leakage current. The interface trap charge density (Dit ) is reduced (from 4.86 to 0.90 × 1012 cm−2 eV−1), calculated from the change in the device S.S. The gate surface leakage current mechanism is explained by combined Mott hopping conduction and Poole Frenkel models for both untreated and sulfuric acid treated devices. Combining the sulfuric acid treatment underneath the gate with the SiNx passivation after full device fabrication results in the reduction of Dit and improves the surface related current collapse

    Effects of surface plasma treatment on threshold voltage hysteresis and instability in metal-insulator-semiconductor (MIS) AlGaN/GaN heterostructure HEMTs

    Get PDF
    In a bid to understand the commonly observed hysteresis in the threshold voltage (VTH) in AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors during forward gate bias stress, we have analyzed a series of measurements on devices with no surface treatment and with two different plasma treatments before the in-situ Al2O3 deposition. The observed changes between samples were quasi-equilibrium VTH, forward bias related VTH hysteresis, and electrical response to reverse bias stress. To explain these effects, a disorder induced gap state model, combined with a discrete level donor, at the dielectric/semiconductor interface was employed. Technology Computer-Aided Design modeling demonstrated the possible differences in the interface state distributions that could give a consistent explanation for the observations

    Enhancement mode operation in AlInN/GaN (MIS)HEMTs on Si substrates using a fluorine implant

    Get PDF
    We have demonstrated enhancement mode operation of AlInN/GaN (MIS)HEMTs on Si substrates using the fluorine treatment technique. The plasma RF power and treatment time was optimized to prevent the penetration of the fluorine into the channel region to maintain high channel conductivity and transconductance. An analysis of the threshold voltage was carried out which defined the requirement for the fluorine sheet concentration to exceed the charge at the dielectric/AlInN interface to achieve an increase in the positive threshold voltage after deposition of the dielectric. This illustrates the importance of control of both the plasma conditions and the interfacial charge for a reproducible threshold voltage. A positive threshold voltage of +3 V was achieved with a maximum drain current of 367 mA mm−1 at a forward gate bias of 10 V.The authors acknowledge financial support from the Engineering and Physics Sciences Research Council (EPSRC) under EP/K014471/1 (Silicon Compatible GaN Power Electronics)

    All-GaN Integrated Cascode Heterojunction Field Effect Transistors

    Get PDF
    All-GaN integrated cascode heterojunction field effect transistors were designed and fabricated for power switching applications. A threshold voltage of +2 V was achieved using a fluorine treatment and a metal-insulator-semiconductor gate structure on the enhancement mode part. The cascode device exhibited an output current of 300 mA/mm by matching the current drivability of both enhancement and depletion mode parts. The optimisation was achieved by shifting the threshold voltage of the depletion mode section to a more negative value with the addition of a dielectric layer under the gate. The switching performance of the cascode was compared to the equivalent GaN enhancement-mode-only device by measuring the hard switching speed at 200 V under an inductive load in a double pulse tester. For the first time, we demonstrate the switching speed advantage of the cascode over equivalent GaN enhancement-mode-only devices, due to the reduced Miller-effect and the unique switching mechanisms. These observations suggest that practical power switches at high power and high switching frequency will benefit as part of an integrated cascode configuration.This work was funded by the Engineering and Physical Sciences Research Council (EPSRC), United Kingdom, under EP/K014471/1 (Silicon Compatible GaN Power Electronics)

    Nanoscale structural and chemical analysis of F-implanted enhancement-mode InAlN/GaN heterostructure field effect transistors

    Get PDF
    We investigate the impact of a fluorine plasma treatment used to obtain enhancement-mode operation on the structure and chemistry at the nanometer and atomic scales of an InAlN/GaN field effect transistor. The fluorine plasma treatment is successful in that enhancement mode operation is achieved with a +2.8 V threshold voltage. However, the InAlN barrier layers are observed to have been damaged by the fluorine treatment with their thickness being reduced by up to 50%. The treatment also led to oxygen incorporation within the InAlN barrier layers. Furthermore, even in the as-grown structure, Ga was unintentionally incorporated during the growth of the InAlN barrier. The impact of both the reduced barrier thickness and the incorporated Ga within the barrier on the transistor properties has been evaluated theoretically and compared to the experimentally determined two-dimensional electron gas density and threshold voltage of the transistor. For devices without fluorine treatment, the two-dimensional electron gas density is better predicted if the quaternary nature of the barrier is taken into account. For the fluorine treated device, not only the changes to the barrier layer thickness and composition, but also the fluorine doping needs to be considered to predict device performance. These studies reveal the factors influencing the performance of these specific transistor structures and highlight the strengths of the applied nanoscale characterisation techniques in revealing information relevant to device performance.</jats:p

    Novel GaN-based vertical heterostructure field effect transistor structures using crystallographic KOH etching and overgrowth

    Get PDF
    A novel V-groove vertical heterostructure field effect transistor structure is proposed using semi-polar (11-22) GaN. A crystallographic potassium hydroxide self-limiting wet etching technique was developed to enable a damage-free V-groove etching process. An AlGaN/GaN HFET structure was successfully regrown by molecular beam epitaxy on the V-groove surface. A smooth AlGaN/GaN interface was achieved which is an essential requirement for the formation of a high mobility channel.This work was funded by the Engineering and Physical Sciences Research Council (EPSRC), United Kingdom, under EP/K014471/1 (Silicon Compatible GaN Power Electronics)

    Does Manual Therapy Provide Additional Benefit To Breathing Retraining In The Management Of Dysfunctional Breathing? A Randomised Controlled Trial

    Get PDF
    Purpose: Dysfunctional breathing (DB) is associated with an abnormal breathing pattern, unexplained breathlessness and significant patient morbidity. Treatment involves breathing retraining through respiratory physiotherapy. Recently, manual therapy (MT) has also been used, but no evidence exists to validate its use. This study sought to investigate whether MT produces additional benefit when compared with breathing retraining alone in patients with DB. Methods: Sixty subjects with primary DB were randomised into either breathing retraining (standard treatment; n¼30) or breathing retraining plus MT (intervention; n¼30) group. Both the groups received standardised respiratory physiotherapy, which included: DB education, breathing retraining, home regimen, and audio disc. Intervention group subjects additionally received MT following further assessment. Data from 57 subjects were analysed. Results: At baseline, standard treatment group subjects were statistically younger (41.7 + 13.5 versus 50.8 + 13.0 years; p¼0.001) with higher Nijmegen scores (38.6 + 9.5 versus 31.5 + 6.9; p¼0.001). However, no significant difference was found between the groups for primary outcome Nijmegen score (95% CI ( 1.1, 6.6) p¼0.162), or any secondary outcomes (Hospital Anxiety & Depression Score, spirometry or exercise tolerance). Conclusion: Breathing retraining is currently the mainstay of treatment for patients with DB. The results of this study suggest MT provides no additional benefit in this patient group.Juliana Burgess, Dr Robert Wilson, Royal Brompton & Harefield NHS Foundation Trust, and Dr Andy Jones fo

    Characterization of p-GaN1−x_{1−x} Asx_{x}/n-GaN PN junction diodes

    Get PDF
    The structural properties and electrical conduction mechanisms of p-type amorphous GaN1−x_{1−x} Asx_{x} /n-type crystalline GaN PN junction diodes are presented. A hole concentration of 8.5 × 1019^{19} cm−3^{-3} is achieved which allows a specific contact resistance of 1.3 × 10−4^{-4} Ω cm2^{2}. An increased gallium beam equivalent pressure during growth produces reduced resistivity but can result in the formation of a polycrystalline structure. The conduction mechanism is found to be influenced by the crystallinity of the structure. Temperature dependent current voltage characteristics at low forward bias (<0.35 V) show that conduction is recombination dominated in the amorphous structure whereas a transition from tunneling to recombination is observed in the polycrystalline structure. At higher bias, the currents are space charge limited due to the low carrier density in the n-type region. In reverse bias, tunneling current dominates at low bias (<0.3 V) and recombination current becomes dominant at higher reverse bias.This work was undertaken with support from the EPSRC (EP/K014471/1)

    Myeloid Differentiation Primary Response Gene 88 Is Required for the Resolution of Otitis Media

    Get PDF
    Signaling defects in the Toll-like receptor (TLR) pathway, such as interleukin-1 receptor–associated kinase 4 deficiency, highlight the prominence of TLR signaling in the defense against bacterial disease. Because myeloid differentiation primary response gene 88 (MyD88) can transduce signals from almost all TLRs, we studied its role in otitis media (OM), the most common upper respiratory tract bacterial infectious disease in young children

    Role of Intraspecies Recombination in the Spread of Pathogenicity Islands within the Escherichia coli Species

    Get PDF
    Horizontal gene transfer is a key step in the evolution of bacterial pathogens. Besides phages and plasmids, pathogenicity islands (PAIs) are subjected to horizontal transfer. The transfer mechanisms of PAIs within a certain bacterial species or between different species are still not well understood. This study is focused on the High-Pathogenicity Island (HPI), which is a PAI widely spread among extraintestinal pathogenic Escherichia coli and serves as a model for horizontal transfer of PAIs in general. We applied a phylogenetic approach using multilocus sequence typing on HPI-positive and -negative natural E. coli isolates representative of the species diversity to infer the mechanism of horizontal HPI transfer within the E. coli species. In each strain, the partial nucleotide sequences of 6 HPI–encoded genes and 6 housekeeping genes of the genomic backbone, as well as DNA fragments immediately upstream and downstream of the HPI were compared. This revealed that the HPI is not solely vertically transmitted, but that recombination of large DNA fragments beyond the HPI plays a major role in the spread of the HPI within E. coli species. In support of the results of the phylogenetic analyses, we experimentally demonstrated that HPI can be transferred between different E. coli strains by F-plasmid mediated mobilization. Sequencing of the chromosomal DNA regions immediately upstream and downstream of the HPI in the recipient strain indicated that the HPI was transferred and integrated together with HPI–flanking DNA regions of the donor strain. The results of this study demonstrate for the first time that conjugative transfer and homologous DNA recombination play a major role in horizontal transfer of a pathogenicity island within the species E. coli
    • …
    corecore