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The structural properties and electrical conduction mechanisms of p-type amorphous GaN1-xAsx/n-type crystalline GaN PN 

junction diodes are presented. A hole concentration of 8.5×1019 cm-3 is achieved which allows a specific contact resistance of 

1.3×10-4 Ω-cm2. An increased gallium beam equivalent pressure during growth produces reduced resistivity but can result in 

the formation of a polycrystalline structure. The conduction mechanism is found to be influenced by the crystallinity of the 

structure. Temperature dependent current voltage characteristics at low forward bias (<0.35 V) show that conduction is 

recombination dominated in the amorphous structure whereas a transition from tunneling to recombination is observed in the 

polycrystalline structure. At higher bias, the currents are space charge limited due to the low carrier density in the n-type 

region. In reverse bias, tunneling current dominates at low bias (<0.3 V) and recombination current becomes dominant at 

higher reverse bias.  

 

1. Introduction 

GaN-based PN diodes are attractive for power electronic applications due to the high breakdown field and low power 

loss and are likely to play an important part in supporting the required large voltages in vertical power devices. However, 

achieving a high hole concentration (>1018 cm-3) remains difficult due to the high activation energy of Mg dopants which can 

result in high resistivity and poor ohmic contacts. Mg-doped p-type amorphous GaN1-xAsx (0.17<x<0.8) with band gaps 

varying from 0.8-3.4 eV have been demonstrated previously with high hole concentrations up to 1×1020 cm-3 [1,2]. The high 

hole concentration can be used to improve the performance of electronic devices such as PN diodes, p-GaN gated HFETs and 

JFETs. However, reports on the characteristics of the material in electronic devices is still lacking. In this paper, for the first 

time, we present a study of the electrical characteristics of p-GaN1-xAsx/n-GaN junction diodes and include the structural 

properties and transport mechanisms.  
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2. Device fabrication 

The diode structure is shown in Fig. 1. Firstly, n-GaN templates with a 500 nm n+GaN contact layer with a Si 

concentration of ~5×1018 cm-3 and 2.5 µm GaN drift layer with Si concentration of ~2×1016 cm-3 were grown using metal-

organic chemical vapour deposition (MOCVD) on sapphire substrates. Subsequently, the sample was transferred (in air 

ambient) into a plasma assisted molecular beam epitaxy (MBE) chamber for 1 µm GaN1-xAsx regrowth. Two samples 

(sample 1 and 2) were grown at different Ga beam equivalent pressures (BEPs) of 2.3×10-7 and 2.1×10-7 Torr, respectively. 

These Ga BEPs were chosen to enable growth with the lowest resistivity which, as will be discussed later, is also close to the 

conditions where a transition between amorphous and polycrystalline is possible. The As2 and Mg BEPs were kept at 6.6×10-

6 and 6×10-9 Torr and the substrate temperature was held at 245 ˚C during growth for both samples. The detailed growth 

mechanisms can be found elsewhere [1,2]. In addition, a set of GaN1-xAsx calibration layers were grown to study the 

dependence of resistivity and contact resistance on Ga BEP which was specified between 1.3×10-7 to 2.2×10-7 Torr. 

 

 

The mesa diode was patterned by standard lithography with an active area of 1.2×10-3 cm2 and dry-etched in an 

inductively coupled plasma system with Cl2-based gases to access the n+GaN current spreading layer. Ti/Al/Ni/Au and 

Ni/Au contacts were deposited using a thermal evaporator as the cathode and anode, respectively. It is worth mentioning that 

most Ni-based ohmic contacts formed on p-GaN in the literature required a post-deposition annealing in O2 ambient to 

achieve a good ohmic contact [3,4]. However, in our samples, post-deposition annealing was not required due to the high 

carrier concentration in the p-type material.  

 

Fig. 1. Device structure of GaN/ GaN1-XAsX PN junction diode. 
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3. Results and discussion 

3.1 Properties of GaN1-xAsx layer 

Room temperature Hall-effect measurements were carried out with a GaN1-xAsx calibration sample grown on sapphire 

with a Ga BEP of 2.3×10-7 Torr. A hole concentration of 8.5×1019 cm-3 and a mobility of 0.15 cm2V-1s-1 were extracted. 

Circular transmission line model (CTLM) structures were used to study the dependence of specific contact resistance (ρc) and 

resistivity on the Ga BEP. As shown in fig. 2, a clear reduction of ρc and resistivity are observed with increased Ga BEP. 

With Ga BEP increased to 2.2×10-7 Torr, ρc and the resistivity reduced to 1.3×10-4 Ω-cm2 and 0.5 Ω-cm, respectively, which 

are lower than those typically achieved in conventional p-GaN [5-8]. However, it is known that an increased Ga BEP can 

result in the formation of polycrystalline clusters embedded in the amorphous matrix [2]. Our approach was to grow the 

highest possible conductivity layers while avoiding the formation of polycrystalline structures.  

 

 

Fig. 3(a) shows the transmission electron microscopy (TEM) images of the PN diode samples. An all-polycrystalline 

structure was observed in sample 1 (Ga BEP 2.3×10-7 Torr). When the Ga BEP was reduced to 2.1×10-7 Torr in sample 2, as 

shown in Fig. 3(b), the growth started with an amorphous layer (~350 nm) followed by a polycrystalline layer which can be 

identified by the electron diffraction patterns. It is thought that the transition occurred as a result of Ga accumulation with a 

resultant effective increase in BEP during growth.  

Fig. 2. Dependence of GaNAs resistivity (black) and specific 
contact resistance (blue) on Ga flux during growth. 
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We were unable to detect any PL or CL signal from amorphous GaN1-xAsx layers, similar to what was observed in our 

previous studies [1,2]. Energy dispersive x-ray spectroscopy (EDS) analysis was carried out on sample 2 to determine the 

average composition of each region. As shown in Fig. 3 (c) and 3 (d), GaN0.34As0.66 and GaN0.21As0.79 compositions were 

measured in the polycrystalline and amorphous regions, respectively. The corresponding band gap energies (~1 eV) are 

estimated according to the band anti-crossing model and previously published results [1].  

Fig. 3. TEM images with electron diffraction patterns of GaNAs layers showing (a) sample 1 
(all-polycrystalline structure), and (b) sample 2 (amorphous/polycrystalline structure); EDS 
results showing the composition of (c) polycrystalline region, and (d) amorphous region. 
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3.2 Current conduction mechanisms in the PN junctions 

The room temperature turn-on voltages (defined at 10 mA/cm2) for sample 1 and 2 are 1.29 and 1.07 V, respectively. 

Fig. 4(a) and 4(b) show the temperature dependent current-voltage (I-V-T) characteristics for sample 1 and 2 measured over 

the temperature range of 305 – 430 K on a semi-log scale. The forward currents increase exponentially at low bias (<0.35 V) 

and non-exponentially at higher bias voltage. In order to identify the dominant current conduction mechanism at low bias 

regime, the reverse saturation current I0 and ideality factor n is extracted by fitting to the Shockley model described by [9]: 

𝐼𝐼 = 𝐼𝐼0[𝑒𝑒𝑒𝑒𝑒𝑒 �𝑞𝑞(𝑉𝑉−𝐼𝐼𝑅𝑅𝑆𝑆)
𝑛𝑛𝑛𝑛𝑛𝑛

� − 1]                      (1) 

where Rs is the series resistance, k the Boltzmann constant and T the temperature. In the classical generation-recombination 

(G-R) model, n lies between 1-2 and is independent of temperature and I0 is characterized by: 

𝐼𝐼0 ∝ exp �− 𝐸𝐸𝑎𝑎𝑎𝑎
2𝑘𝑘𝑘𝑘

�                        (2) 

where Eac is the activation energy that describes the energy of the recombination site. Good curve fitting was obtained at the 

low bias regime (< 0.35V) where series resistance and high injection effect are insignificant. The room temperature ideality 

factors extracted from sample 1 and sample 2 are 4.3 and 3.5, respectively. Several groups have reported ideality factors 

greater than two in GaN PN junctions which contradicts the G-R model. The exact reason for the high ideality factor in our 

samples is unclear. Shah et al. [10] attributed this behavior to the summation of n of each rectifying junction within the 

structure, including the contacts. In our case, although the contacts are ohmic as confirmed by CTLM measurements, at low 

currents the n+/n-GaN junction might contribute to additional n due to the abrupt change in doping profile. Another 

Fig.4. Temperature dependent IV characteristics on semi-log scale of (a) sample 1, and (b) sample 2. 
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possibility, as explained by Hurni et al. [8], is due to the high density of interfacial defects, dislocations and non-uniformity 

of the doping.  

 

 

On the other hand, a tunneling current in the junction may also result in n>2 which can be identified when n is inversely 

proportional to T [11-14].The plot of n versus T is given in Fig. 5. In sample 1, n reduces to 3.8 when T increases to 340 K 

which is a signature of a tunneling mechanism. Within this temperature range, ln(I0) is observed to be proportional to T which 

can be described by a multi-step tunneling mechanism similar to amorphous silicon PN junctions [12] and GaN LEDs [15]. 

As a polycrystalline structure, tunneling is expected at the grain boundaries between the crystallites [16]. In addition, the high 

density of defects within the crystallites may also act as mid-gap states and lead to defect-assisted tunneling. Above 340 K, n 

becomes independent of T indicating a possible transition to the G-R mechanism. A similar transition process was also 

observed in wafer fused GaN/GaAs diodes [17].  

 

 

Fig.5. Temperature dependent of ideality factor n  

Fig.6. Arrhenius plot of I0. Sample 1 is tunneling dominated at 
temperatures below 340 K therefore not shown in the Arrhenius plot. 
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Fig. 6 shows the Arrhenius plot of I0 to determine the energies of the recombination sites. However, a non-linear fit was 

observed for sample 1 whereas one would expect a straight line in the case of recombination dominated conduction. A similar 

non-linearity has been observed in polysilicon PN diodes [16] where two activation energies were obtained, indicating the 

presence of two energy levels within the band gap. In our case, the activation energy gradually increases from 0.32 to 0.48 eV 

as the temperature increases, which may indicate multiple energy levels distributed within the band gap. It is speculated that 

the recombination process occurs at the lower energy tunneling sites at low temperature and, as temperature increases, higher 

energy levels are involved which moves the activation energy towards higher values. In sample 2, on the other hand, n 

remains almost constant throughout the temperature range. ln(I0) is observed to have a linear dependence on 1/kT which is 

consistent with eq. 2. Eac = 0.56 eV is extracted from Arrhenius plot which is in agreement with the estimated half band gap 

value for GaN0.21As0.79. This is an indication that recombination in the amorphous GaN0.21As0.79 part of the depletion region 

dominates the conduction. 

 

 

Fig. 7 shows the forward current characteristics on a log-log scale. At the higher bias (>0.35 V), the currents follow a 

power law (Vm) dependence in both samples. The value of m is greater than two which indicates that the current is space 

charge limited [14]. This is understandable as the electron concentration of the drift layer is more than three orders of 

magnitude lower than the hole concentration in the p-type region, and a space charge limited region forms at high current 

injection levels. The reduced m at higher bias indicates the conduction is moving towards a series resistance limited region. 

Fig.7. Forward current characteristics on a log-log scale of (a) sample 1, and (b) sample 2. 
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Fig. 8 shows the temperature dependent reverse currents plotted against reverse voltage Vr on a log-log scale. Two 

distinctive regions can be seen in both samples. At Vr > 0.3 V (except T < 340 K regime in sample 1), the reverse currents 

follow a V0.5 dependence which is known to be the generation current within the depletion region [14]. The Arrhenius plots of 

the reverse currents at 0.5 V yield activation energies of 0.28 to 0.37 eV for sample 1 and 0.52 eV for sample 2. The increase 

of activation energy of sample 1 is believed to be due to a similar behavior as in the low forward bias regime which involves 

multiple energy levels. At Vr < 0.3 V, the reverse currents do not follow the V0.5 relationship but are found to have a similar T 

dependence as in the multi-step tunneling case. Additionally, a similar trend is observed in sample 1 for all applied voltages 

at T < 340 K. This behavior coincides with the transition from tunneling to recombination under forward bias in sample 1. 

 

4. Discussion 

Several groups observed significantly reduced turn-on voltage in regrown GaN diode structures which were attributed to 

tunneling current through interfacial defect states [17-19]. In other words, the diode characteristics were dominated by the 

interfacial states instead of the band discontinuity and junction built-in potential. In order to evaluate the contribution of the 

interface states in our samples, one needs to first estimate the built-in potential (Vbi) which is approximately equal to the band 

gap of GaN1-xAsx (~1 eV) plus the conduction band offset [1]. However, the theoretical value of Vbi cannot be determined in 

this case as the conduction band offset ΔEc and electron affinity of GaN1-xAsx are unknown. From the I-V measurement, the 

turn-on voltages (1.29 and 1.07 V) are close to the estimated band gap values of the respective GaN1-xAsx. So the turn-on 

voltage in our case cannot be as heavily dominated by interfacial states as in [17]. However, the possibility of early turn-on 

cannot be ruled out since the theoretical value of Vbi is unknown, unless the ΔEc is reduced to zero due to interface grading. In 

Fig.8. Reverse current characteristics on a log-log scale of (a) sample 1, and (b) sample 2. 
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fact, an early turn-on is very likely to happen as tunneling current is observed in the sample as revealed by the I-V-T 

experiment.  

Caution must be observed in interpreting the “non-physical” ideality factor (n>2) presented in both samples despite the fact 

that they show G-R dominated characteristics. This may be due to the existence of tunneling caused by the defects within the 

structure. In our samples, the dangling bond at the GaN surface and the impurities incorporated during the transfer before 

MBE regrowth can contribute mid-gap states presents at the GaN/GaN1-xAsx interface. In addition, defects within the bulk 

semiconductors can also contribute to tunneling current.  

 

5.  Conclusion 

We have studied the structural and electrical characteristics of GaN1-xAsx/GaN PN diodes. The material transits from 

amorphous into polycrystalline with increased Ga BEP. The formation of an amorphous layer with low resistivity requires 

careful control of the Ga BEP during growth. The transport mechanism is greatly influenced by both interfacial and bulk 

defects. At low forward bias, G-R process is the possible dominating mechanism in the amorphous structure whereas a 

possible transition from tunneling to recombination is observed in the polycrystalline structure. At high forward bias, the 

currents show space charge limited characteristics due the low carrier density in the n-type region. In reverse bias, tunneling 

current dominates at low voltage and becomes recombination dominated at higher bias. The high hole concentration is 

beneficial for good ohmic contacts and shows promise for low-loss GaN-based power diodes and JFETs. Practical diodes 

designed to withstand high reverse breakdown voltage will likely require less As concentration in order to increase the band 

gap so that the carrier generation and tunneling are limited. 
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