2,311 research outputs found

    Sclerosing encapsulating peritonitis: a case successfully treated with immunosuppression.

    Get PDF
    Perit Dial Int. 1999 Sep-Oct;19(5):478-81. Sclerosing encapsulating peritonitis: a case successfully treated with immunosuppression. Martins LS, Rodrigues AS, Cabrita AN, Guimaraes S. SourceDepartment of Nephrology, Hospital de Santo António, Porto, Portugal

    Dissecting the impact of information and communication technologies on digital twins as a service

    Get PDF
    Recent advances on Edge computing, Network Function Virtualization (NFV) and 5G are stimulating the interest of the industrial sector to satisfy the stringent and real-time requirements of their applications. Digital Twin is a key piece in the industrial digital transformation and its benefits are very well studied in the literature. However, designing and implementing a Digital Twin system that integrates all the emerging technologies and meets the connectivity requirements (e.g., latency, reliability) is an ambitious task. Therefore, prototyping the system is required to gradually validate and optimize Digital Twin solutions. In this work, an Edge Robotics Digital Twin system is implemented as a prototype that embodies the concept of Digital Twin as a Service (DTaaS). Such system enables real-time applications such as visualization and remote control, requiring low-latency and high reliability. The capability of the system to offer potential savings by means of computation offloading are analyzed in different deployment configurations. Moreover, the impact of different wireless channels (e.g., 5G, 4G and WiFi) to support the data exchange between a physical device and its virtual components are assessed within operational Digital Twins. Results show that potentially 16% of CPU and 34% of MEM savings can be achieved by virtualizing and offloading software components in the Edge. In addition, they show that 5G connectivity enables remote control of 20 ms, appearing as the most promising radio access technology to support the main requirements of Digital Twin systems.This work was supported in part by the H2020 European Union/Taiwan (EU/TW) Joint Action 5G-eDge Intelligence for Vertical Experimentation (DIVE) under Grant 859881, in part by the H2020 5Growth Project under Grant 856709, in part by the Madrid Government (Comunidad de Madrid-Spain) through the Multiannual Agreement with Universidad Carlos III de Madrid (UC3M) in the line of Excellence of University Professors under Grant EPUC3M21, and in part by the context of the V PRICIT (Regional Program of Research and Technological Innovation)

    Toward intelligent cyber-physical systems: Digital twin meets artificial intelligence

    Get PDF
    Industry 4.0 aims to support smarter and autonomous processes while improving agility, cost efficiency, and user experience. To fulfill its promises, properly processing the data of the industrial processes and infrastructures is required. Artificial intelligence (AI) appears as a strong candidate to handle all generated data, and to help in the automation and smartification process. This article overviews the digital twin as a true embodiment of a cyber-physical system (CPS) in Industry 4.0, showing the mission of AI in this concept. It presents the key enabling technologies of the digital twin such as edge, fog, and 5G, where the physical processes are integrated with the computing and network domains. The role of AI in each technology domain is identified by analyzing a set of AI agents at the application and infrastructure levels. Finally, movement prediction is selected and experimentally validated using real data generated by a digital twin for robotic arms with results showcasing its potential.This work has been (partially) funded by the H2020 EU/TW joint action 5G-DIVE (Grant #859881) and the H2020 5Growth project (Grant #856709). It has also been funded by the Spanish State Research Agency (TRUE5G project, PID2019-108713RB-C52/AEI/10.13039/501100011033)

    OpenFlowMon: a fully distributed monitoring framework for virtualized environments

    Get PDF
    Proceedings of: 2021 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), 9 November 2021, Heraklion, Greece.Network monitoring allows a continuous assessment on the health and performance of the network infrastructure. With the significant change on how networks are deployed and operated, mainly due to the advent of virtualization technologies, alternative monitoring approaches are emerging to provide a finer-grained flow monitoring to complement already existing mechanisms and capabilities. In this paper, we proposed and developed an Open-Source Flow Monitoring Framework (OpenFlowMon), a fully distributed monitoring framework implemented solely with open-source solutions. This framework is used to assess the performance and the overhead introduced by two different flow monitoring approaches: (i) switch level and (ii) compute node level monitoring. Results show that monitoring at compute node level not only reduces the overhead but also mitigates a potential complex post-processing in east-to-west traffic.This work has been (partially) funded by H2020 EU/TW 5G-DIVE (Grant 859881) and H2020 5Growth (Grant 856709)

    An Intelligent Edge-based Digital Twin for Robotics

    Get PDF
    This paper has been presented at 2020 IEEE Globecom Workshop on Advanced Technology for 5G Plus.Digital Twin is one of the use cases targeted by the fourth industrial revolution (Industry 4.0), which, through the digitalization of the robotic systems, will enable enhanced automation and remote controlling capabilities. Building upon this concept, this work proposes a solution for an Edge-based Digital Twin for robotics, which leverages on the cloud-to-things continuum to offload computation and intelligence from the robots to the network. This imposes stringent requirements over the communication technologies which are fulfilled by relying on 5G. This solution is implemented in an E2E scenario combining the cloud-to-things continuum, 5G connectivity and intelligence capabilities and validated through a set of experimental evaluations. Results show not only that offloading the robot's functions to the edge is feasible when supported by the 5G connectivity, but also the benefits of introducing intelligence and automation.This work has been (partially) funded by H2020 EU/TW 5G-DIVE (Grant 859881) and H2020 5Growth (Grant 856709). It has been also funded by the Spanish State Research Agency (TRUE5G project, PID2019-108713RB-C52PID2019-108713RB-C52 / AEI / 10.13039/501100011033)

    FoReCo: a forecast-based recovery mechanism for real-time remote control of robotic manipulators

    Get PDF
    Wireless communications represent a game changer for future manufacturing plants, enabling flexible production chains as machinery and other components are not restricted to a location by the rigid wired connections on the factory floor. However, the presence of electromagnetic interference in the wireless spectrum may result in packet loss and delay, making it a challenging environment to meet the extreme reliability requirements of industrial applications. In such conditions, achieving real-time remote control, either from the Edge or Cloud, becomes complex. In this paper, we investigate a forecast-based recovery mechanism for real-time remote control of robotic manipulators (FoReCo) that uses Machine Learning (ML) to infer lost commands caused by interference in the wireless channel. FoReCo is evaluated through both simulation and experimentation in interference prone IEEE 802.11 wireless links, and using a commercial research robot that performs pick-and-place tasks. Results show that in case of interference, FoReCo trajectory error is decreased by x18 and x2 times in simulation and experimentation, and that FoReCo is sufficiently lightweight to be deployed in the hardware of already used in existing solutions.This work has been partially funded by European Union's Horizon 2020 research and innovation programme under grant agreement No 101015956, and the Spanish Ministry of Economic Affairs and Digital Transformation and the European Union-NextGenerationEU through the UNICO 5G I+D 6GEDGEDT and 6G-DATADRIVE

    Beyond Multi-access Edge Computing: Essentials to realize a Mobile, Constrained Edge

    Get PDF
    ETSI Multi-access Edge computing (MEC) main purpose is to improve latency and bandwidth consumption by keeping local traffic local while providing computing resources near the end-user. Despite its clear benefits, the next-generation of hyper-distributed applications (e.g., edge robotics, augmented environments, or smart agriculture) will exacerbate latency and bandwidth requirements, posing significant challenges to today's MEC deployments. In this work, we leverage on the current study item ETSI GR MEC 036, introducing a lightweight constrained version of a MEC platform that can be deployed in a mobile end terminal or in its closed locality. This work presents design options for cMEC, and how it can untangle the aforementioned gaps while being architectural compatible with a full-fledged MEC framework. Finally, key use cases and still open challenges are discussed, including recommendations to extend the current MEC standard towards constrained environments

    Influence of air pollutants on circulating inflammatory cells and microRNA expression in acute myocardial infarction.

    Get PDF
    Air pollutants increase the risk and mortality of myocardial infarction (MI). The aim of this study was to assess the inflammatory changes in circulating immune cells and microRNAs in MIs related to short-term exposure to air pollutants. We studied 192 patients with acute coronary syndromes and 57 controls with stable angina. For each patient, air pollution exposure in the 24-h before admission, was collected. All patients underwent systematic circulating inflammatory cell analyses. According to PM2.5 exposure, 31 patients were selected for microRNA analyses. STEMI patients exposed to PM2.5 showed a reduction of CD4+ regulatory T cells. Furthermore, in STEMI patients the exposure to PM2.5 was associated with an increase of miR-146a-5p and miR-423-3p. In STEMI and NSTEMI patients PM2.5 exposure was associated with an increase of miR-let-7f-5p. STEMI related to PM2.5 short-term exposure is associated with changes involving regulatory T cells, miR-146a-5p and miR-423-3p.This work was supported by Ministerio de Ciencia e Innovación [SAF2017-82886-R, to F.S.M] Proyecto de Investigación en Salud [PI21/01583 to H.F.]. Grant from the Sociedad Española de Cardiologia to F.A. Ministerio de Ciencia, Innovación y Universidades, Carlos III Institute of Health-Fondo de Investigación Sanitaria [PI19/00545 to P.M.] From the Comunidad de Madrid [S2017/BMD-3671-INFLAMUNE-CM] to FSM and PM. Tis research has been co-fnanced by Fondo Europeo de Desarrollo Regional (FEDER).S

    CD69 expression on regulatory T cells protects from immune damage after myocardial infarction.

    Get PDF
    Increasing evidences advocate for an important function of T cells in controlling immune homeostasis and pathogenesis after myocardial infarction (MI), although the underlying molecular mechanisms remain elusive. In this study, a broad analysis of immune markers in 283 patients revealed a significant CD69 overexpression on Treg cells after MI. Our results in mice showed that CD69 expression on Treg cells increased survival after left-anterior-descending coronary artery (LAD)-ligation. Cd69-/- mice developed strong IL-17+ γδT cell responses after ischemia that increased myocardial inflammation and, consequently, worsened cardiac function. CD69+ Treg cells, by induction of AhR-dependent CD39 ectonucleotidase activity, induced apoptosis and decreased IL-17A production in γδT cells. Adoptive transfer of CD69+ Treg cells to Cd69-/- mice after LAD-ligation reduced IL-17+ γδT cell recruitment, thus increasing survival. Consistently, clinical data from two independent cohorts of patients indicated that increased CD69 expression in peripheral blood cells after acute MI was associated with a lower risk of re-hospitalization for heart failure (HF) after 2.5 years of follow-up. This result remained significant after adjustment for age, sex and traditional cardiac damage biomarkers. Our data highlight CD69 expression on Treg cells as a potential prognostic factor and a therapeutic option to prevent HF after MI.This study was supported by competitive grants from the Ministerio de Ciencia e Innovación (MCIN), through the Carlos III Institute of Health (ISCIII)-Fondo de Investigación Sanitaria (PI22/01759) to P.M.; RTI2018-094727-B-100 to J. M-G; Comunidad de Madrid grants S2017/BMD-3671-INFLAMUNE-CM to P.M. and FSM.; Fundació La Marató TV3 (20152330 31) to J.M-G and F.S-M.; Ministerio de Ciencia e Innovación (MCIN) RTI2018-099357-B-I00, and CIBERFES (CB16/10/00282), Human Frontier Science Program (grant RGP0016/2018), and Leducq Transatlantic Networks (17CVD04) to JAE. AC is supported by Marie Skłodowska- Curie grant (agreement No. 713673). R.B-D. is supported by Formación de Profesorado Universitario (FPU16/02780) program from the Spanish Ministry of Education, Culture and Sports. The CNIC is supported by the ISCIII, the MCIN and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505).S

    Does accelerating universe indicates Brans-Dicke theory

    Full text link
    The evolution of universe in Brans-Dicke (BD) theory is discussed in this paper. Considering a parameterized scenario for BD scalar field ϕ=ϕ0aα\phi=\phi_{0}a^{\alpha} which plays the role of gravitational "constant" GG, we apply the Markov Chain Monte Carlo method to investigate a global constraints on BD theory with a self-interacting potential according to the current observational data: Union2 dataset of type supernovae Ia (SNIa), high-redshift Gamma-Ray Bursts (GRBs) data, observational Hubble data (OHD), the cluster X-ray gas mass fraction, the baryon acoustic oscillation (BAO), and the cosmic microwave background (CMB) data. It is shown that an expanded universe from deceleration to acceleration is given in this theory, and the constraint results of dimensionless matter density Ω0m\Omega_{0m} and parameter α\alpha are, Ω0m=0.286−0.039−0.047+0.037+0.050\Omega_{0m}=0.286^{+0.037+0.050}_{-0.039-0.047} and α=0.0046−0.0171−0.0206+0.0149+0.0171\alpha=0.0046^{+0.0149+0.0171}_{-0.0171-0.0206} which is consistent with the result of current experiment exploration, ∣α∣≤0.132124\mid\alpha\mid \leq 0.132124. In addition, we use the geometrical diagnostic method, jerk parameter jj, to distinguish the BD theory and cosmological constant model in Einstein's theory of general relativity.Comment: 16 pages, 3 figure
    • …
    corecore