
This is a preprint version of the following published document:

FoReCo: a forecast-based recovery mechanism for real-
time remote control of robotic manipulators

Journal: IEEE Transactions on network and service
management

DOI: 10.1109/TNSM.2022.3173436

Date of Publication: 9 May 2022

Authors: Milan Groshev (1), Jorge Martin-Perez (1),
Carlos Guimaraes (2), Antonio de la Oliva (1), Carlos
J. Bernardos (1)

(1) University Carlos III of Madrid,

(2) ZettaScale Technology SARL

10.1109/TNSM.2022.3173436

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3173436, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 1

FoReCo: a forecast-based recovery mechanism for
real-time remote control of robotic manipulators
Milan Groshev∗, Jorge Martı́n-Pérez∗, Carlos Guimarães†, Antonio de la Oliva∗ and Carlos J. Bernardos∗

∗Universidad Carlos III de Madrid, Spain
†ZettaScale Technology SARL, France

Abstract—Wireless communications represent a game changer
for future manufacturing plants, enabling flexible production
chains, as machinery and other components not to be restricted
to a location by the rigid wired connections on the factory
floor. However, the presence of electromagnetic interference in
the wireless spectrum may result in packet loss and delay,
making it a challenging environment to meet the extreme relia-
bility requirements of industrial applications. In such conditions,
achieving real-time remote control, either from the Edge or
Cloud, becomes complex. In this paper, we investigate a forecast-
based recovery mechanism for real-time remote control of robotic
manipulators (FoReCo) that uses Machine Learning (ML) to
infer lost commands caused by interference in the wireless
channel. FoReCo is evaluated through both simulation and
experimentation in interference prone IEEE 802.11 wireless links,
and using a commercial research robot that performs pick-and-
place tasks. Results show that upon interference FoReCo reduces
the trajectory error by more than a 34.35% in both simulation,
and experimentation. We also show that FoReCo is sufficiently
lightweight to be deployed in existing hardware.

Index Terms—Robotic Manipulator, Wireless Remote Control,
Machine Learning, IEEE 802.11, Interference.

I. INTRODUCTION

Real-time remote control and coordination of robot manip-
ulators over a wireless network are seen as the key enabler
for future industrial applications [1], where a high level
of flexibility, accuracy, data sharing, and cost reduction are
desired. While wireless is a must for mobile robots like
Autonomous Guided Vehicles (AGVs), the implementation of
wireless connections for robots manipulators also has many
advantages such as greater flexibility, reduction of installation
and maintenance costs, ease of scale, and less personnel
exposure to hazardous situations [2]. Industry 4.0 scenarios
will decide whether to use wireless technologies in the licensed
spectrum, such as 5G New Radio [3]; or in the unlicensed
spectrum, such as IEEE 802.11 [4].

Nowadays, industrial verticals implement IEEE 802.11 tech-
nologies for factory automation through commercial solutions
such as Industrial WLAN (IWLAN) developed by Siemens.
The low cost, good performance (e.g., low latency, high
throughput), and extensive implementation in commercial
equipment make IEEE 802.11 a suitable candidate to fulfill
the tight timing constraints of industrial automation. However,
achieving the reliability, transparency, and stability for real-
time remote control required in many applications remains a
critical challenge in IEEE 802.11. due to the highly unpre-
dictable, unreliable, and interference prone wireless channel,

Fig. 1: Diagram of an industrial robotic remote control.

which introduces delays, packet loss, jitter, throughput bot-
tlenecks, and even loss of connectivity [5]. The presence of
packet collisions and electromagnetic (EM) interference in the
shared medium results in delayed or even lost control com-
mands. While the delayed delivery of control commands to
the robot breaks the transparency of the remote control system
(e.g., lag between the executed remote control commands and
the robot movements), the lost commands directly influence
the stability resulting in a deviation from the desired trajectory.

Mitigating the effect of delayed or lost commands in real-
time remote control robots are not new, as it has been tackled
through the lens of control theory in the robotics field [6].
However, most of these works do not consider the presence
of EM interference, and assume that commands’ delays are
constant, following sums of normal distributions, or follow-
ing first order Markov Processes. These assumptions do not
consider the specifics of IEEE 802.11 Carrier-Sense Multiple
Access with Collision Avoidance (CSMA/CA) based Medium
Access Control, as they do not capture how the underlying
back-off, and re-transmissions impact the packet latency, nor
the interference. Rather than making assumptions about the
commands’ delay and designing a delay-tolerant control loop,
this paper shifts the focus and proposes a predictive control
loop that infers the delayed or lost commands, and feeds them
to the robot control loop.

In this paper, we propose FoReCo: a forecast-based re-
covery mechanism for real-time remote control of robotic
manipulators. FoReCo is suitable for autonomous or human-
assisted remote control of robot manipulators that perform
repetitive tasks such as welding, materials handling, picking,
and packing, or assembly. In case the robot does not receive
a remote control command on time due to IEEE 802.11
collisions or EM interference, FoReCo (i) infers the delayed

Authorized licensed use limited to: UNIVERSIDAD CARLOS III MADRID. Downloaded on May 17,2022 at 08:23:52 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3173436, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 2

command; and (ii) injects it in the robot driver loop so the
operator does not perceive misbehaviour in the remote control
process.

This paper contributes to the state-of-the-art as follows:
• we formulate an optimization problem to minimize the

trajectory error due to delayed and lost real-time remote
control commands;

• we propose FoReCo to infer delayed and lost commands
using Machine Learning (ML) algorithms;

• we validate FoReCo via simulation using an IEEE 802.11
analytical model [7] that accounts for an interference
source, and packet collisions due to channel neighbors;
and

• we show experimentally that FoReCo works in a com-
mercial research robotic arm, and mitigates the effects of
electromagnetic interference created with a real jammer.

In the remainder of this paper, we review the related work
in §II, and formulate the problem statement in §III. Then, in
§IV we present how FoReCo infers delayed/lost commands
through ML. In §V we explain the analytical model of
IEEE 802.11 that we use to test FoReCo in simulated scenarios
with wireless interference. Later in §VI, FoReCo is validated
via simulation and real experiments. Finally, §VII discusses
the main insights from the obtained results, followed by
conclusions and future directions in §VIII.

II. RELATED WORK

There is a rising interest in the networking community
for providing support to Industry 4.0 cases in commercial
deployments. The goal is always to meet the reliability that
industrial processes require as it is in the case of remotely
controlled robotic manipulators. Under the umbrella of the
5G-Public-Private-Partnership (5G-PPP) and the European Re-
search Council (ERC), the European networking community
has been focusing on how 5G and beyond 5G architectures
can support Industry 4.0. 5G-DIVE [8] and 5Growth [9], are
two examples of platforms that manage the adequate resource
provisioning and allocation of services like a remote control
in Industry 4.0. More recent European research projects [10]
as Daemon [11] and Hexa-X [12] also provide support to In-
dustry 4.0 applications by bringing intelligence to the network
in order to meet strict constraints such as reliability.

In the case of teleoperation applications (i.e., applications
providing remote control of systems), there is a plethora
of work in the robotic and mechatronic literature on how
to operate robotic manipulators. Reference [13] presents a
prototype designed for the remote operation of an industrial
robot manipulator using augmented reality, and [14] studies
how to overcome, with the help of predictions, the collision
of a robotic manipulator with objects due to remote operator
errors. Works as [15] and [16] propose teleoperated robotic
manipulators that assess complex and high precision tasks
with the help of ML assisted solutions, and gravity com-
pensation approaches, respectively. However, the robotic and
mechatronic literature many times fails to consider the latency
induced by the network in teleoperated/remotely-controlled
systems. Indeed, none of the aforementioned works account

for the network latency in the problem formulation, nor in the
experimental stage, as authors control the robotic manipulator
with a computer directly attached to the robot.

Works as [13]–[16] introduce errors in remotely-controlled
robotic manipulators when applied in networks that suffer from
high latencies or packet losses. Also, they cannot rely on
network platforms like [8], [17], [11] and [12] to overcome
such problems, as these platforms make a best-effort approach
by means of network resource allocation and life-cycle man-
agement. That is, platforms as 5Growth [17] make the best
to allocate network and computing resources for applications
as [16], but they do not assist the remote-control application
to recover when control commands are delayed or lost in the
network.

Therefore, it is up to the remote-control application to
decide how to react when control commands are delayed or
lost. Mainly the robotic/mechatronic literature relies on control
theory to overcome issues produced by delayed control com-
mands. Works as [18]–[21] propose time domain passivity-
based approaches, in particular [18] proposes to use a two-
layer and a switching passivity-based [22] approach to deal
with delays in the network. Other solutions [23]–[25] cope
with the delay in remote-control using wave variable passivity-
based approaches [26]. Another option is to resort to adap-
tive and robust control mechanisms to ensure the remotely-
controlled robot stability upon delayed commands, as done
in [27]–[30]. For example, [30] uses a Radial Basis Function
Neural Network [31] based on Proportional Differential (PD)
control [32] to mitigate the effect of external uncertainties and
delayed commands in the robotic manipulator. However, the
cited control-theory solutions in robotic/mechatronic literature
takes unrealistic assumptions about the remote control com-
mands’ delays. In particular, [20] and [28] assume that the
delay in the network is constant; [19], [21], [30], [23] and
[24] assume that delays are constant or with small variations;
and [18], [29], [25], and [27] take the causality assumption
for the delay, i.e., the network delay cannot increase faster
than time1. All of the aforementioned assumptions on network
delay are not suitable for IEEE 802.11 wireless networks.

In this paper, we aim to improve the application and commu-
nication reliability by solving the problem from the networking
perspective. We use command predictions in order to recover
from the loss or delay of control packets. There are also works
in the state of the art that follows a similar approach, in
particular, [33] presents a control communication protocol that
takes into account the wireless Signal to Noise Ratio (SNR)
and uses a reinforcement learning [34] approach [35] to find
the optimal speed of an AGV; and [36] proposes an AGV path
tracking application using a Kalman filter to provide delay
estimations for successful operation. However, [33] assumes
that the success of the wireless transmission is captured by
a first-order Markov process [37], and [36] assumes that the
command delay in an IEEE 802.11 networks follows a Gamma
distribution. Both assumptions neglect the presence of EM
interference in the wireless channel, as well as the back-

1Following our notation, the causality assumption is expressed as:
|∆(ci+1)−∆(ci)| ≤ |g(ci+1)−g(ci)|

Authorized licensed use limited to: UNIVERSIDAD CARLOS III MADRID. Downloaded on May 17,2022 at 08:23:52 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3173436, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 3

off and re-transmission mechanisms of IEEE 802.11 wireless
channels that we investigate in this paper. Moreover, both [33]
and [36] are solutions to enhance the reliability of real-time
remotely controlled AGVs in wireless networks, rather than
robotic manipulators.

The potential advantages from the wireless remote control of
a robot manipulator are significant, but realizing such systems
over an IEEE 802.11 network remains a challenging task. To
the best of our knowledge, the state of the art disregards the
presence of EM interference in real-time remote control and
makes assumptions about the remote control commands’ delay
that do not apply to IEEE 802.11 wireless networks. To fill
these gaps, we propose FoReCo, an ML-based solution that
aims to minimize the robot trajectory error by predicting the
missing remote control commands without making assump-
tions about the commands’ delay.

III. PROBLEM STATEMENT

A remote control system in industrial environments gen-
erally consists of three main parts: (i) remote location; (ii)
communication network; and (iii) factory floor (see Fig. 1).
The remote site resides away from the factory floor, where a
remote controller (fully autonomous or human-assisted) sends
control commands to the factory robot in an open-loop fashion
following a given frequency. Control commands which are
sent every Ω [ms] have to transverse the transport network
and wireless link to reach the robot. Additionally, the remote
site contains visual and audio feedback that is streamed back
to the remote location in order to provide similar conditions
as those on the factory floor. While the control commands are
very sensitive to packet losses and jitter, the visual and audio
feedback can provide good quality of experience with up to
1 % of packet loss and 30 ms of jitter. Studying the visual and
audio feedback over the inconsistent wireless channel and how
it can impact the remote control of the robot is an interesting
topic that is out of the scope of this work.

In this work considers an IEEE 802.11 wireless link, as
its low price makes it an appealing solution for Industry 4.0.
However, the unlicensed IEEE 802.11 spectrum leads to packet
collisions, backoff times, and re-transmissions that introduce
delay in the control commands. That is, since the moment a
control command ci is generated g(ci), up until the moment
it is delivered to the robot a(ci), the transport network and
wireless link introduce a delay ∆(ci) = a(ci)− g(ci). Note
that the latter is the addition of the delay introduced by the
transport network ∆T (ci), and the delay introduced by the
wireless link ∆W (ci), i.e.: ∆(ci) = ∆T (ci) + ∆W (ci). In this
paper, we make the following assumption on the transport
network delay:

Assumption 1. The delay introduced by the transport network
∆T (ci) is upper bounded by a constant D:

∆T (ci)≤ D, ∀i (1)

Since each network entity (e.g., switch or router) in the
transport network has finite queue sizes, the transport network

t1 t2 t3 t4 t5

t1 t2 t3 t4 t5
(c2)

me

me

ro
b

o
t

a
rm

 d
is

ta
n

ce
fr

o
m

 o
ri

g
in

c1
c2

c3 c4

c5

delayed
command

lost
command

distorted trajectory

de ned trajectory

de ned command
arrival

delayed/lost
commandsc2

c4

ro
b

o
t

a
rm

 d
is

ta
n

ce
fr

o
m

 o
ri

g
in

c1=(1,3,4)

c3

c4

c5

c2

c2
c4error

error

Fig. 2: Impact of delayed and lost commands in the robot
trajectory.

can be modeled as a Jackson network [38]. Thus, we choose
D as a constant higher than the summation of waiting times
and processing time at each queue within the remote control
path.

However, even if D is very small, the delay introduced by
the IEEE 802.11 link ∆W (ci) might lead to a laggy behavior
in the remotely controlled robot. This means that the remote
controller will experience a lag in between the time it moves
the controller, and the time the robot moves. Since remotely
controlled robots can only tolerate waiting for τ milliseconds
to receive the next command, if ∆(ci)> τ the command ci will
exceed the tolerated delay, and the robot will not execute it.
Thus, it is necessary that the control commands delays satisfy
∆(ci)≤ τ.

Control commands are sent every Ω ms and the robot
expects to receive those commands in the same interval
(Ω ms) for smooth operation. However, due to the network
delay the next control command ci+1 might not arrive until
Ω+∆(ci+1) ms have passed.

Overall, the robot will not execute commands that arrive
out of time ∆(ci) > τ, or are lost ∆(ci)→ ∞. Upon any of
these situations, the command is not executed, resulting in
a deviation from the ideal trajectory that the robot should
follow (see Fig. 2). Note that the remote controller will notice
this error in the real trajectory via the visual feedback that
it receives from the factory floor (see Fig. 1). Thus, it is
necessary to recover the discarded packets to minimize the
error in the real trajectory.
Problem 1. Given the random variables ∆(ci), a distance
d : Rd ×Rd 7→ R, a tolerance τ, and a record of the last R
commands; find f : Rd× . . .︸︷︷︸

R−2

×Rd 7→ Rd to solve

min
ĉN

lim
N→∞

1
N

N

∑
i

d(ĉi,ci) (2)

s.t. ĉi = f
(
{ĉ j}i−1

i−R
)

1∆(ci)>τ + ci
[
1−1∆(ci)>τ

]
, ∀i (3)

With 1∆(ci)>τ = 1 if command ci is delayed more than τ ms,
and zero otherwise. Problem 1 targets to find a function f to
derive those commands that did not arrive on time. Addition-
ally, the derived commands ĉi should minimize the error (i.e.,
the distance d(ĉi,ci)) with respect to the original command

Authorized licensed use limited to: UNIVERSIDAD CARLOS III MADRID. Downloaded on May 17,2022 at 08:23:52 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3173436, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 4

Remote
controller

FoReCo Camera

Visual display

Remote site

Factory floor

ML
training Forecast

command

Inject
forecast

Control
command

Visual
input

Wireless
communicaon

Robot
drivers

Robot

Fig. 3: FoReCo building block and remote control system.

ci sent by the remote controller. That is, the objective of (2)
is to minimize the dashed error region in Fig. 2 by using
forecasts f

(
{ĉ j}i−1

i−R
)

when a command ci does not arrive on
time ∆(ci)> τ (see (3)).

IV. FORECAST-ASSISTED REMOTE CONTROL (FORECO)

In this section, we present FoReCo as a forecast-based re-
covery mechanism to minimize the trajectory error of remotely
controlled robots via wireless connectivity.

A. The FoReCo Building Block

As discussed in §III, whenever the command delay exceeds
the tolerance ∆(ci)> τ, the robot considers the command ci to
be outdated and does not execute it. Depending on the robot,
the absence of the command ci may result in the robot stops,
or keep feeding the prior command ci−1 to the robot control
loop, which is implemented with solutions as Proportional-
Integral-Derivative (PID) controllers (see [39]). Either way,
the command ci will not be executed and the robot trajectory
will deviate from the expected, i.e., the trajectory executed by
the remote controller. It is at this point that FoReCo predicts
the command ci that has not arrived on time and transparently
triggers its execution into the robot. Hence, FoReCo stands as
a complementary solution for any remotely controlled robot
using a wireless link, while being agnostic to the implemented
robot controller (control theory-based or not).

To predict control commands out of time, FoReCo follows
an ML based approach, which has been proven to be effective
with intention prediction and estimation of future trajectories
of objects, such as vehicles, bikes, and humans. The learn-
ing model consist of predicting incoming control commands
ci,ci+1,ci+2, . . . with the help of the prior ci−1,ci−2, . . . com-
mands. To do so, we advocate for an ML based methodology
due to (i) the repetitive nature of the industrial tasks performed
by remotely operated robots; and (ii) the difficulty to solve this
problem with traditional dynamic programming algorithms.

Fig. 3 shows the conceptual components of the network
control system we use to remotely control a robot (in-line
with Fig. 1). The system shows the details of the interactions
between the remote site and the factory floor over a commu-
nication channel. First, a real-time video stream of the robot

is presented to a visual display over a wired communication
channel. For simplicity, we assume that the uplink channel
is error and delay-free and the video input is delivered to
the remote operator immediately. The remote controller, with
the help of the visual input, sends control commands over
the wireless communication channel, and the commands are
received by both the robot and FoReCo. With the received
commands, FoReCo performs two actions:

1) ML training: to solve Problem 1, FoReCo resorts to
ML to derive f ({c j},~w), with ~w being the weights to
learn (see §IV-B). To obtain ~w, FoReCo creates a dataset
(see Fig. 6) with the commands it receives from the
remote controller. The dataset contains a history of H
commands, and FoReCo uses αH of them for training,
and βH for testing; with α+ β = 1. As in Problem 1,
the training procedure aims to minimize the distance
between predicted commands ĉi, and the ones sent by the
remote operator ci. Hence, FoReCo trains its ML solution
f ({c j},~w) s.t.:

min
~w

1
αH

αH

∑
i

d
(
ci, f

(
{c j}i−1

i−R,~w
))

(4)

With the obtained weights ~w, FoReCo tests the ML
predictions accuracy in the testing set βH.

2) Command forecast, validation and injection: FoReCo
awaits a control command ci each Ω ms, and it triggers
the forecasting if the next command ci+1 arrives latter
than a(ci) + Ω + τ. In this case, FoReCo will forecast
the next command as ĉi+1 = f

(
{ĉ j}i

i−R,~w
)
, i.e., using

the ML solution f and the weights ~w obtained from the
training stage. Next, FoReCo will validate the forecast
by checking if the forcasted command offset is within
the acceptable boundaries with respect to the current
position of the robot. This validation is performed by
FoReCo in order to prevent forecasts that can lead to an
accident, malfunction, or robot misuse. The valid forecast
command ĉi+1 is then injected in the robot drivers (as
illustrated in Fig. 3) with the latter assuming that it
received a command on time. In the case a command
arrives on time a(ci+1)≤ a(ci)+Ω+τ, FoReCo will just
store the command in the dataset and later use it for
training and forecasting purposes. Note that we refer to
ĉi = ci if the command arrived on time ∆(ci) ≤ τ, so it
satisfies the constraint stated in (3). Thus, the forecasting
receives as input {ĉ j}i

j−R commands that arrived on time,
and the forecasts of previous commands that did not
arrive on time.

B. Studied ML Forecasting Algorithms

In the following, the selected ML algorithms used to im-
plement FoReCo are described, as well as how they perform
the command forecasting.

FoReCo is designed to forecast commands of remotely
controlled robotic arms as the one in Fig. 1. Each command
consists of d joints (remember ci ∈ Rd) that move together to
shift the arm manipulator position, so the latter reaches the
object of interest. Each command coordinate ci = (c1

i , . . . ,c
d
i)

Authorized licensed use limited to: UNIVERSIDAD CARLOS III MADRID. Downloaded on May 17,2022 at 08:23:52 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3173436, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 5

represents the rotation angle or shift of a joint, depending on
the joint nature.

The multivariate nature of the robotic arm suggests the
use of vector autoregressive techniques as VAR. Appendix A
details how the Box-Jenkins methodology points out that
VAR is the most adequate model to infer future commands
ĉi+n of the robotic arm. On top of VAR, we have also
investigated a seq2seq model to check if it can outperform the
well-established Box-Jenkins methodology. Both solutions are
compared against a moving average that serves as a benchmark
for the command inference accuracy.

We acknowledge that not all ML forecasting algorithms are
covered in this section. Nevertheless, in this paper we focus
on some algorithms that are adequate and sufficient to outline
the benefits of FoReCo, namely, we focus on the following
algorithms:

• Vector Autoregression (VAR): this regression solution
is designed to predict multi-dimensional time-series with
correlation across dimensions. This is the case of robotic
arms, whose joint coordinates typically present correla-
tion ∀i,∃k,m : ck

i ∼ ck+m
i ; as they have to move together

to reach and grab an object. VAR derives the prediction
of command as follows:

ĉk
i+1 = f k ({ĉ j}i

i−R,~w
)
= bk +

d

∑
l=1

i

∑
j=i−R

wl
i, j · ĉl

j, k ≤ d

(5)
with bk being the bias for the kth coordinate, wl

i, j the
regression weights, and f k(·) denoting the kth coordinate
of the resulting prediction. Both bk,wl

i, j elements lie
within the weight vector ~w.

• Sequence to sequence (seq2seq) [40]: this ML solution
is based on a Neural Network (NN) that receives as
input a sequence and produces an output, that in our
case is just a single output. These seq2seq models are
known as many-to-one, as we feed it with a sequence
of past commands {ĉ j}i

i−R to produce a single one ĉi.
The seq2seq architecture we use has: (i) an encoder
layer of 200 Long Short-Term Memory (LSTM) neurons
with Rectifier Linear Unit (ReLU) activations; (ii) and
a decoder layer of 30 LSTM neurons, also with ReLU
activations. The motivation behind the use of a seq2seq
solution is to learn and encode the characteristics of
robot movements, so the decoder layer “interprets” the
encoded characteristics and guess the next command ĉi+1.
Analytically, the seq2seq encoder and decoder layers are
represented as follows:

ek
i =φ

k (W0ĉi +W1ai−1 +W2mi) , k ≤ d (6)

ĉk
i+1 = f k ({ĉ j}i

i−R,~w
)
=

=φ
k
(

W4ek
i +W5a′i−1 +W6m′i

)
, k ≤ d (7)

with φ(x) denoting the ReLU function2, Wi denoting
weight matrices (whose values are unrolled to derive the
weight vector ~w), ai−1,a′i−1 being the output of the LSTM

2φ(x) = 0,x≤ 0 and φ(x) = x otherwise

activation units, and mi,m′i referring to the memory cells
of the encoder and decoder; respectively.

• Moving Average (MA): we resort to this algorithm to
have a benchmark for VAR and seq2seq. The MA derives
the command prediction using:

ĉi+1 = f k ({ĉ j}i
i−R,~w

)
=

1
R

i

∑
j=i−R

ĉ j (8)

Note that FoReCo is flexible to support other forecasting
algorithms, which can be integrated in a modular fashion.

C. Training of Selected ML Forecasting Algorithms

Next, we detail how FoReCo trains the selected ML algo-
rithms described above.
• VAR training: to train the VAR algorithm, we resort

to Ordinary Least Squares (OLS), i.e., the weights are
computed as follows:

~w = argmin
~w

αH

∑
i

d

∑
k

(
ck

i − f k({c j}i−1
i−R,~w)

)2
(9)

over the training portion of the dataset αH. Here f k(·)
refers to (5). Note that minimizing the summation in (9)
is equivalent to minimizing the expression in (4), taking
as distance d(ci, ĉi) = ∑k

(
ck

i − ĉk
i
)2.

• seq2seq training: we train the seq2seq solution using
Adam, a stochastic optimization method invariant to small
gradients, as it is the case of our experimental study, e.g.,
a the 3rd robot joint takes values like c3

i = 0.001. We use
Adam to iteratively minimize the error of the forecasts
within a batch Bi of commands from the training set, i.e.,
Bi < αH. Hence, at each training step Adam minimizes:

min
~wt

l
(
{c j}Bi

j=0,~wt

)
=

αH

∑
i

d

∑
k

(
ck

i − f k({c j}i−1
i−R,~wt)

)2

Bi
(10)

with l(·) denoting the loss function, and ~wt the updated
weight vector at the step t of the training stage. Note
that minimizing (10) is equivalent to minimizing (4) over
the batch Bi, rather than the whole training dataset αH,
taking the sum of squared distances. At each step the
weights are updated as follows:

~wt+1 = ~wt −η
mt+1

1−βαH
1

1√
vi

1−βαH
2

+ ε
(11)

mt+1 = β1mt +(1−β1)∇~wl
(
{c j}Bi

j=0,~wt

)
(12)

vt+1 = β2vt +(1−β2)
[
∇~wl

(
{c j}Bi

j=0,~wt

)]2
(13)

with mt ,vt being the estimates of the first and second
moment of the loss function gradient ∇~wl(·), η the step
size, and β1,β2,ε other hyper-parameters.

V. IEEE 802.11 WITH ELECTROMAGNETIC
INTERFERENCE

So far we have discussed how FoReCo works in §IV-A,
and the ML solutions that we consider to assess the command

Authorized licensed use limited to: UNIVERSIDAD CARLOS III MADRID. Downloaded on May 17,2022 at 08:23:52 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3173436, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 6

c4

c3 c2

∆W(c1)

Robot

Shared
IEEE 802.11

link

STA

0 RTX

1 RTX

6 RTX

lost

...

Wireless interference

c1 c1

IEEE 802.11
queue

Factory floor

Sensor Robot

Fig. 4: Impact of wireless interference, retransmissions (RTX),
and factory devices in the delay ∆W (ci) that control commands
experience in an IEEE 802.11 link.

forecasting in §IV-B and §IV-C, respectively. In this section we
explain the analytical model we consider to derive the delay
that control commands experiment ∆W (ci) in IEEE 802.11
wireless links under EM interference. The analytical model
is latter used in §VI-C to derive the ∆W (ci), and assess the
performance of FoReCo in a simulated scenario as close as
possible to real IEEE 802.11-based real-time remote control.

In this paper, we resort to the analytical model presented
in [7] to derive wireless delays. This work models the MAC
layer of IEEE 802.11 with CSMA/CA, and studies how
neighboring nodes and non-IEEE 802.11 interfering sources
impact the wireless delay. The work is based on a refine-
ment [41] of Bianchi’s characterization of IEEE 802.11 [42].
The particularity is that [5] extends the underlying Markov
chain to also capture the presence of an interference source
that is active during Ti f transmission slots, and emits with a
probability pi f . The proposed model also captures both the
back-off mechanisms and re-transmissions (RTX) of frames
upon collision in the IEEE 802.11 wireless link.

With the aforementioned model, [7] obtains the steady-state
vector of each state, in particular, they derive the probability
that a frame has to be transmitted after j unsuccessful re-
transmissions, which is denoted as a j. Moreover, [7] also
derives E j [∆W (ci)], that is, average delay that the command ci
experiences in the wireless transmission after j unsuccessful
re-transmissions. Based on such expression, we derive in
the Appendix some theoretical results around the analytical
model given in [7], that give some insights about the delay
of control commands. In particular, the theoretical results in
the Appendix conclude that in the considered IEEE 802.11
scenario:

i) ∆(ci) is only bounded on average, but not always (see
Lemma 1);

ii) ∆(ci) diverges (see Corollary 1); and
iii) the causality assumption does not apply (see Corollary 2).

Hence, the delay assumptions taken in the solutions presented
in §II do not hold. In other words, we cannot bound the
delays that the remote control commands ci are experiencing.
Still, we resort to the analytical model presented in [7], as
such unbounded delay behaviors are realistic in IEEE 802.11
scenarios upon the presence of interference sources.

Laptop

Remote
controller

WiFi
jammer

WiFi
access
point

L2
switch

Niryo One
robot manipulator

pick
place

Fig. 5: Testbed setup.

To derive the value of ∆W (ci) we follow [7] and model
the transmission of control commands ci over IEEE 802.11
wireless links as a queuing model. From the problem statement
formulation presented in §III, we know that control commands
have an arrival rate 1

Ω
. These commands are queued in the

IEEE 802.11 access point before they are transmitted to the
shared wireless link. Following the IEEE 802.11 standard, a
frame is re-transmitted up to 7 times. After this threshold is
exceeded, the frame (and therefore, the control command) is
assumed to be lost and no further re-transmission is executed
(see Fig. 4).

Depending on the number of RTX, the control command
delay ∆W (ci) will be higher or lower. This system behaves as
an G/HEXP/1/Q queuing model, with Q being the length of
the access point queue, and the service rates of the hyperex-
ponential distribution corresponding to the average delay that
control commands see after j RTX, i.e., 1

E j [∆W (ci)]
.

Given this G/HEXP/1/Q queuing model, we can derive
∆W (ci) in the desired IEEE 802.11 wireless scenario account-
ing for the number of transmitting devices and the probability
and time that the wireless interference is active. These are
the delay values used in the simulation scenarios in §VI-C,
and we derive them using the CIW discrete event simulation
library [43].

VI. RESULTS

In order to evaluate FoReCo, we consider a realistic indus-
trial application where a robot manipulator is remotely con-
trolled to perform a pick and place task. This remote control
application allows us to select the most suitable forecasting
algorithm for FoReCo (see §IV-B), and to evaluate a prototype
implementation of FoReCo under simulation (see §VI-C) and
experimental scenarios (see §VI-D). It is worth mentioning
that in this section we compare the performance of FoReCo
with the baseline Niryo controller mainly because of the lack
of state-of-the-art remote controllers for robot manipulators.
We leave the comparison to more recent AVG approaches,
e.g., learning-based AVG controllers [33], for follow-up work,
where the AVG controllers need to be adapted for robot
manipulators in order to employ their benefits.

A. Testbed setup and dataset collection
Fig. 5 shows the experimental testbed, built in the 5TONIC

laboratory3 that is composed of: a 6-axis Niryo One robotic

3https://www.5tonic.org

Authorized licensed use limited to: UNIVERSIDAD CARLOS III MADRID. Downloaded on May 17,2022 at 08:23:52 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3173436, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 7

manipulator, a 2.4 GHz IEEE 802.11 access point (AP), an
L2 switch, a 2.4 GHz Silvercrest Wireless Transmitter that
is used as WiFi jammer, and a joystick that is connected
to a laptop with 8GB RAM and 4CPU@2.4GHz via USB.
The communication between the robot and the joystick is
comprised of a wireless link from the robot to the AP and an
Ethernet link from the AP to the laptop using the L2 switch.
The Niryo One robotic arm is equipped with a Raspberry Pi 3
with a 1.2 GHz 64-bit CPU, 1GB RAM, and an IEEE 802.11n
interface. The robot maximum speed is 0.4 m/s for the steeper
axes and 90°/s for the servo axis with a configured Robot
Operating System (ROS) control command frequency of 50Hz
(i.e., Ω = 20 ms) and command moving offset of 0.04 rad.
The remote control and robot system is ROS version 1. The
Niryo One ROS stack expects to receive control commands
each Ω ms and considers that a packet did not arrive on time
otherwise, i.e., the tolerance is τ = 0. Niryo One ROS stack
uses the prior command ĉi+1 = ci in case ∆(ci+1)> Ω. Every
received command is passed to the Niryo motion planning
layer (MoveIt), which uses Proportional–Integral–Derivative
(PID) control.

Fig. 6 shows part of the dataset created by performing pick
and place actions. The pick and place actions were manually
repeated 100 times by two different human operators, an
experienced and inexperienced human operator resulting in
the creation of two separate datasets. To do so, they used the
joystick as a remote controller, issuing a new control com-
mand every 20 ms. The inexperienced/experienced operators’
datasets’ contain H = 187109 commands. Both datasets store
the joint states ci of the robot manipulator under ideal network
conditions, i.e., low latencies and absence of packet collision.
To achieve such conditions, the datasets were obtained using
Ethernet to send the remote controller commands. The expe-
rienced dataset was used to train the ML models while the
inexperienced data was used for remote control and testing.
In this way, we ensure that the trained ML model operates
on data that is tightly related but not the same as the training
data.

B. Forecasting accuracy

We now evaluate which of the selected forecasting al-
gorithms achieves the highest forecasting accuracy in the
collected datasets. The VAR algorithm was implemented us-
ing statsmodel v0.12.1, and seq2seq using Tensorflow 2.1.0.
Fig. 7 shows the RMSE accuracy of each algorithm as
we increase the forecasting window, i.e., how many con-
secutive commands are forecasted (a command is sent each
Ω = 20 ms). For every algorithm, we considered a record of
the last R = 1, . . . ,20 commands, and Fig. 7 plots the best-
performing R parameter for each algorithm. For the training
stage (see §IV-C), we used the α = 80% of the experienced
human operator data for training, and a β = 20% of the
inexperienced operator data for testing. It is worth mentioning
that we performed the 80%-20% split of the datasets only for
testing purposes, mainly because of the repetitive nature of
the movements, whereby using 20% of inexperienced operator
data is sufficient to give us insides of the most accurate model.

200

300

400

500

60 80 100 120 140 160 180 200

d
is

ta
n
ce

 f
ro

m
 o

ri
g
in

 [
m

m
]

time [s]

defined trajectory

pick place

Fig. 6: Robot trajectory dataset with pick and actions of an
inexperienced operator.

Later, when we evaluate the models in simulation and exper-
imentation, we use 100% of the experienced human operator
data for training, and 100% of the inexperienced operator
data for validation. For seq2seq we resort to the standard
hyper-parameter selection: η = 0.001, β1 = 0.9, β2 = 0.999,
ε = 1e−07.

Results show that VAR has slightly better accuracy than
MA, while seq2seq has the worst performance. It was expected
that VAR would outperform MA since it is designed for
correlated time-series – like the 6-axis time-series of the Niryo
One robotic arm. However, seq2seq yielded worse accuracy
than MA due to the vast number of weights |~w|= 163803 to
learn, thus, it did not converge to an optimal solution. Given
the results in Fig. 7, we use the MA and trained VAR solution
as forecasting techniques in our simulation analysis presented
in §VI-C.

C. Simulation evaluation

In the following, we evaluate how FoReCo behaves under a
simulated environment with wireless interference. We consider
a transport network with negligible transport delay, i.e., D' 0
ms in Assumption 1, thus, commands’ delays are dominated
by the wireless delay ∆(ci) ' ∆W (ci). To derive ∆W (ci), we
resort to an analytical model of IEEE 802.11 with non-IEEE
interfering sources [7], and use the parameters reported in [7,
Table 2]. The goal of the simulation validation is two-folded:
(i) evaluate the precision of the forecasted commands by
FoReCo, and (ii) assess the scalability with up to 25 robotic
arms sharing a wireless medium with interferences. All the
details about the simulation implementation of FoReCo and

0

 20

 40

 60

 80

100

120

20 100 200 300 400 500 600 700 800 900 1000

fo
re

ca
st

 R
M

S
E
 [

m
m

]

forecasting window [ms]

VAR
MA

seq2seq

Fig. 7: Forecast accuracy for different forecasting windows.

Authorized licensed use limited to: UNIVERSIDAD CARLOS III MADRID. Downloaded on May 17,2022 at 08:23:52 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3173436, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 8

1

2.5

5

 10 50 100In
te

rf
e
re

n
c
e
 p

ro
b
a
b
il
it

y
 [

%
]

Interference duration [slots]

7.27 20.06 93.54

4.80 5.51 7.86

41.11 342.70 354.69

 1

 10

 100

R
M

S
E
 [

m
m

]
(a) no forecasting - 5 robots

1

2.5

5

 10 50 100In
te

rf
e
re

n
c
e
 p

ro
b
a
b
il
it

y
 [

%
]

Interference duration [slots]

43.54 331.98 330.08

15.91 32.02 77.49

338.29 349.98 364.27

 1

 10

 100

R
M

S
E
 [

m
m

]

(b) no forecasting - 15 robots

1

2.5

5

 10 50 100In
te

rf
e
re

n
c
e
 p

ro
b
a
b
il
it

y
 [

%
]

Interference duration [slots]

305.12 334.52 349.03

68.28 220.71 332.86

340.69 357.30 368.74

 1

 10

 100

R
M

S
E
 [

m
m

]

(c) no forecasting - 25 robots

1

2.5

5

 10 50 100In
te

rf
e
re

n
c
e
 p

ro
b
a
b
il
it

y
 [

%
]

Interference duration [slots]

9.00 8.98 9.03

9.01 8.98 9.00

9.02 14.42 19.95

 1

 10

 100

R
M

S
E
 [

m
m

]

(d) FoReCo (MA) - 5 robots

1

2.5

5

 10 50 100In
te

rf
e
re

n
c
e
 p

ro
b
a
b
il
it

y
 [

%
]

Interference duration [slots]

9.00 10.61 14.87

8.98 9.01 9.05

11.24 19.78 26.32

 1

 10

 100

R
M

S
E
 [

m
m

]

(e) FoReCo (MA) - 15 robots

1

2.5

5

 10 50 100In
te

rf
e
re

n
c
e
 p

ro
b
a
b
il
it

y
 [

%
]

Interference duration [slots]

9.66 15.04 20.11

9.02 9.43 11.28

14.62 23.64 31.81

 1

 10

 100

R
M

S
E
 [

m
m

]

(f) FoReCo (MA) - 25 robots

1

2.5

5

 10 50 100In
te

rf
e
re

n
c
e
 p

ro
b
a
b
il
it

y
 [

%
]

Interference duration [slots]

1.35 1.36 1.40

1.36 1.37 1.39

1.37 5.16 9.27

 1

 10

 100

R
M

S
E
 [

m
m

]

(g) FoReCo (VAR) - 5 robots

1

2.5

5

 10 50 100In
te

rf
e
re

n
c
e
 p

ro
b
a
b
il
it

y
 [

%
]

Interference duration [slots]

1.37 3.32 7.26

1.36 1.38 1.47

3.14 9.05 14.90

 1

 10

 100

R
M

S
E
 [

m
m

]

(h) FoReCo (VAR) - 15 robots

1

2.5

5

 10 50 100In
te

rf
e
re

n
c
e
 p

ro
b
a
b
il
it

y
 [

%
]

Interference duration [slots]

2.24 7.11 11.67

1.41 2.17 4.57

5.20 12.27 19.83

 1

 10

 100

R
M

S
E
 [

m
m

]

(i) FoReCo (VAR) - 25 robots

Fig. 8: Robot trajectory error upon interference without forecasting (top), with FoReCo using MA (middle), and FoReCo using
VAR (bottom).

the IEEE 802.11 analytical model can be found in our publicly
available git repository4.

Each simulation issues the commands of an inexperienced
human operator and introduces command delays ∆W (ci) fol-
lowing [7]. Fig. 8 shows the error experienced by the robot
trajectory. Fig. 8 (top) shows the results using the state-of-
the-art solution, i.e., repeating the prior command ĉi+1 = ĉi
upon delays. Fig. 8 (middle) shows the results when FoReCo
recovers packets using the MA solution specified in (8), and
Fig. 8 (bottom) shows the results when FoReCo uses the VAR
solution to recover packets – as specified in (5). Since the
introduced wireless delay ∆W (ci) is a random variable, we
repeat each simulation 40 times. Note that, in each simulation,
we vary the time and probability of the active interference.
Each square in the Fig. 8 heatmap illustrates the averaged
RMSE of the 40 simulations done for every pair of interference
duration, and probability. The RMSE is computed over the
entire robot trajectory induced by the inexperienced human
operator, and it considers commands arriving on time ∆(ci)≤ τ

and out of time ∆ci > τ, without using control command
forecasting (top in Fig. 8), and with FoReCo using MA and
VAR (middle, and bottom rows in Fig. 8; respectively).

The RMSE error in Fig. 8 is represented in loga-
rithmic scale, and we can appreciate that FoReCo com-

4https://gitlab.it.uc3m.es/5g-team/FoReCo

mand recovery constrained the robot trajectory error below
19.95 mm, 26.32 mm and 31.81 mm using MA (middle row)
and 9.27 mm, 14.90 mm and 19.83 mm using VAR (bottom
row) for 5, 15 and 25 robots on the factory floor, respectively.
Fig. 8 shows that the VAR solution outperforms the MA
solution in every simulation scenario for approximately 10
mm. On the other hand, the no forecasting solution resulted
in an RMSE in the order of ∼ 350 mm in the worst cases,
no matter the number of robots. Thus, simulations indicate
that (i) the VAR solution outperforms the MA solution by
minimizing the error for additional 10 mm; (ii) FoReCo based
on VAR will not exceed errors of 20 mm; and (iii) FoReCo
reduces the experienced error by more than one order of
magnitude. In particular, FoReCo using VAR reduces by more
than a 94.4% (368.74 mm with no forecasting and 19.83 mm
with FoReCo (VAR)) the experienced error in factory floors
of 25 robots

D. Experimental evaluation

Motivated by the simulation results, we implemented and
integrated a prototype of FoReCo that is based on VAR
within the real remote control system presented in Fig. 5. The
prototype is following the principles defined in §IV, and uses
ROS to interact with the remotely controlled Niryo One robotic
arm. All the details about the prototype implementation of
FoReCo can be found in our publicly available git repository4.

Authorized licensed use limited to: UNIVERSIDAD CARLOS III MADRID. Downloaded on May 17,2022 at 08:23:52 UTC from IEEE Xplore. Restrictions apply.

https://gitlab.it.uc3m.es/5g-team/FoReCo

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3173436, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 9

370

380

390

400

410

23 23.1 23.2 23.3

d
is

ta
n
ce

 f
ro

m
 o

ri
g
in

 [
m

m
]

time [s]

no forecast

defined trajectory

FoReCo

error

packet loss

(a) 5 consecutive losses

340

360

380

400

22.7 22.8 22.9 23 23.1

d
is

ta
n
ce

 f
ro

m
 o

ri
g
in

 [
m

m
]

time [s]

no forecast

error

packet loss

defined trajectory

FoReCo

(b) 10 consecutive losses

330

360

390

420

22.6 22.8 23 23.2 23.4

d
is

ta
n
ce

 f
ro

m
 o

ri
g
in

 [
m

m
]

time [s]

no forecast

error

packet loss

defined trajectory

FoReCo

(c) 25 consecutive losses

Fig. 9: Robot trajectory with controlled packet losses using no forecasts, and FoReCo.

240

250

260

270

280

290

12.2 12.4 12.6 12.8 13 13.2 13.4 13.6 13.8 14

d
is

ta
n
ce

 f
ro

m
 o

ri
g
in

 [
m

m
]

time [s]

no forecast

defined trajectory

FoReCo

jammer
interference

channel
recovery

PID control
error

shift
error

Fig. 10: Robot trajectory upon IEEE 802.11 jammer interfer-
ence

1) Controlled experimental evaluation: In our first ex-
perimental analysis, we manually introduced loss of control
commands in order to evaluate the improvements that the
prototype offers under a controlled environment. The complete
dataset from the inexperienced user was used to develop a
remote controller that was randomly dropping consecutive
control commands. Every time consecutive control commands
were lost, FoReCo injected predictions from the VAR model.
We executed 3 different sets of experiments, where the remote
controller randomly introduced 5, 10, or 25 consecutive losses.
Each experiment run was 30 seconds, with the robot joint
states being recorded in the robot itself.

Fig. 9 shows the trajectories followed by the robot arm
when consecutive control commands were lost for the case
of no forecasts, and the FoReCo solution. The results show
that FoReCo mitigates the negative effects of lost commands
reducing the trajectory error. Namely, FoReCo reduces the
RMSE a 34.35%, 52.74%, and 56.31% upon 5, 10, and 25
consecutive losses, respectively. Note that the benefits are
more noticeable as the number of consecutive losses increase,
since FoReCo prevents the robot from being still for long
periods. However, Fig. 9(c) also shows that FoReCo deviates
more and more from the defined trajectory as the number of
consecutive losses increase (in between second 23 and 23.2),
since VAR builds its forecasts ĉi+1 using prior forecasted com-
mands ĉi, ĉi−1, . . . , ĉi−R Thus, the prediction error propagates
– see (5).

2) Jammed experimental evaluation: In our second exper-
imental analysis, we emulate a realistic interference scenario

where the Silvercrest Wireless device is used to transmit
synchronized radio waves in the same frequency as the robot,
introducing unpredictable network delays ∆(ci) and packet
losses – same as the analytical model [7] used in prior
simulations in §VI-C. The dataset from the inexperienced user
was used in order to develop a remote controller that sent the
control commands over the jammed wireless network. Every
time control command(s) were lost or delayed due to the
interference ∆(ci) > τ, FoReCo injected predictions from the
VAR model. The experiment was executed for 30 seconds and
in the robot, we recorded the robot joint states.

Fig. 10 presents the trajectories followed by the robot arm
when the wireless channel was interfered by the jammer.
The results show how FoReCo reduces by more than 50%
the trajectory error RMSE (from 18.91 mm to 8.72 mm) –
compared to the bare Nyrio One solution without forecasting.
In the interval between 12.4 and 12.6 seconds, FoReCo starts
to deviate (shift) from the defined trajectory in an identical way
to the controlled experiments described above. In addition,
an interesting observation is how the robot trajectory behaves
upon channel recovery. In the latter case, the Niryo One ROS
MoveIt PID controller takes around 400 ms to stabilize the
trajectory (from second 13.5 to 13.8), since the PID controller
receives repeated commands ci+1 = ci,∀i ∈ [12.4,13.4] during
more than a second, resulting in the highlighted error in
Fig. 10.

3) Training and inference times: Since Niryo One is
equipped with a Raspberry Pi3, which is limited in terms of
computing power, we executed a set of experiments to measure
both training and inference times of VAR whenever executed
in the robot itself. While training takes around 5.99±0.06
min to train using the experienced human operator dataset,
the inference (i.e., prediction of the commands) only takes
1.60±0.16 ms. These results show that the current hardware
of the robot is sufficient to not only accommodate FoReCo
within the constraints of our prototype but also to support the
implementation of more stringent applications control loops.
Note that training is only required when we need to build or
update the model, which time profiling is presented in Table I.

For comparison, Table II also presents training and inference
times in different equipment: (i) NVIDIA Jetson Nano which
can be co-located with Niryo One; (ii) a laptop equipped
with a 2nd gen Intel Core i7 and 6GB RAM representing
the user equipment; and (iii) a local server with two In-
tel(R) Xeon(R) CPU E5-2620 v4@2.10GHz and 64GB RAM

Authorized licensed use limited to: UNIVERSIDAD CARLOS III MADRID. Downloaded on May 17,2022 at 08:23:52 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3173436, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 10

TABLE I: Time profiling of FoReCo training in Niryo One

Load
Data (s)

Down Sam-
pling (s)

Check
Quality (s)

Training
Model
(s)

Raspberry Pi3
(Robot)

1.95 ±
0.02

0.26 ±
0.007

306.38 ±
3.15

50.98 ±
0.54

representing the Edge to offload training and inference tasks.

TABLE II: Training and inference times in different equipment

Training (min) Inference (ms)
Raspberry Pi3 (Robot) 5.99 ± 0.06 1.60 ± 0.16
NVIDIA Jetson Nano (Robot) 1.31 ± 0.01 0.61 ± 0.28
Laptop (UE) 0.36 ± 0.01 0.22 ± 0.10
Local Server (Edge) 0.23 ± 0.007 0.0001 ± 0.00003

VII. DISCUSSION

In this section we discuss the results, analyzing how they
can be interpreted from the perspective of real-time wireless
networked control systems. In addition, possible future direc-
tions are identified.

A. Overall performance and applicability

In experimental scenarios §VI-D with a single robot
FoReCo reduces by a 34.35% the trajectory error upon the
presence of up to 25 slots of interference. Moreover, the sim-
ulation results §VI-C show that FoReCo reduces the trajectory
error up to a 94.4% with 25 robots sharing the IEEE 802.11
channel, and up to 100 consecutive interference slots. That is,
FoReCo’s benefits are more evident upon worse wireless con-
ditions, either due to simultaneous robots transmitting in the
wireless medium, or due to longer interference periods. The
reason is that packet collisions and delayed/lost commands
increase with the number of robots in the channel, and the
robotic arm remains still for longer periods as the consecutive
losses increase. Thus, FoReCo recovers more delayed/lost
commands and prevents the robot from stopping.

Results show that FoReCo can achieve high precision
and suggest that industrial manipulation applications (e.g.,
assembly, pick-and-place) can benefit from adopting the pro-
posed method. Results also demonstrate that the prototype of
FoReCo can be easily attached to robot manipulators without
robot-specific modifications. Furthermore, results show how
predictive control can improve the reliability of real-time
remote control over the IEEE 802.11 wireless network.

B. Coexistence with emerging wireless technologies

Existing industrial wireless technologies cannot meet all
of the remote control requirements (such as 99.999% of
reliability, 2-20ms latency, 100-200 Mbps data rate). Although
emerging technologies such as WiFi 6E and 5G are expected
to be a key enabler in this regard by increasing the levels of
reliability in industrial wireless, the uncertain and time varying
wireless channel continues to be an issue for wireless technolo-
gies. The fact that FoReCo does not make any assumptions
about the wireless channel and the network delays makes it

applicable also to emerging wireless such as mmWave or 5G.
In addition, it is very likely that legacy systems will leverage
previous technologies which will operate for years to come,
and FoReCo can offer them the needed reliability for running
remote control applications.

C. Real-time Path Tracking Predictions

Concerning the ML algorithm for repetitive reference tra-
jectories, given the performance of VAR, our future work will
consider other forecasting algorithms as exponential smooth-
ing methods. We will also investigate other ML approaches,
such as classification algorithms, to infer the type of command
that comes next. It is worth noting that, although VAR per-
formed well on the pick-and-place dataset, a deviation from the
defined trajectory is witnessed when the number of consecutive
commands losses increases. Future versions of FoReCo may
mitigate large periods of consecutive losses by incorporating
delayed commands that did not arrive on time, i.e., commands
ci with ∆(ci) > τ could be used instead of the predicted one
ĉi, to infer commands after nΩ ms. In other words, based on
(3) we could use ĉn = f (ĉn−1, . . . ,ci, . . .).

D. Predictions at the edge of the network

In addition to improving the model accuracy and precision,
an edge-based version of FoReCo can be considered where
the VAR algorithm will always base its predictions on the real
control commands ĉi = f ({c j}i−1

i−R). However, this approach
is a bit more disruptive because an edge-based version of
FoReCo indicates that the predictions will need to traverse
the interfered wireless channel. Hence, FoReCo will need
to piggyback the predictions together with real-time control
commands. Piggybacking predictions require modifications of
the robot drivers to use them whenever a control command
does not arrive on time. We leave such an option for future
work.

E. An extra resilience layer

As stated in §II, FoReCo targets a solution from the network
perspective, in opposition to already existing related work.
However, the two approaches are not mutually exclusive and,
consequently, they can be used together to provide even higher
levels of reliability and precision when performing remote
control of robotic manipulators. In doing so, in a full-fledged
solution, several recovery mechanisms can be envisioned as a
resilience stack where all layers work together in a fail-over
fashion.

F. Extension to other robotic systems

Although FoReCo explicitly targeted robotic manipulators,
the solution described in this work can be easily extended to
many other robotic systems that implement open- or close-loop
between themselves and the remote controlling system. For
example, remotely controlled AGVs within the manufacturing
plant. Similar to the robotic manipulators, missing commands
are predicted and injected into the AGV so that it can smoothly
follow its trajectory. Still, FoReCo requires that performed

Authorized licensed use limited to: UNIVERSIDAD CARLOS III MADRID. Downloaded on May 17,2022 at 08:23:52 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3173436, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 11

tasks are somehow periodic so that the corresponding dataset
can be created, and training and inference tasks executed with
acceptable levels of precision.

VIII. CONCLUSIONS

This paper presents FoReCo, a forecast-based recovery
mechanism for real-time robot remote control. The FoReCo
prototype uses VAR and ROS, and its performance has been
assessed in a commercial research robotic arm remotely con-
trolled over IEEE 802.11 wireless channels under the presence
of interference. We also validate FoReCo through simulation
and assess its performance in a real testbed. Results show
that FoReCo provides high precision by achieving a trajectory
error below 19.83 mm in simulation, and of 8.72 mm in
experimentation with a commercial research robotic arm and
jammed interference. Overall, FoReCo reduces the trajectory
error by more than a 34.35% in every experimental and
simulated scenario. Moreover, FoReCo is lightweight and
can be deployed in the hardware already available in several
solutions.

As follow-up work, we plan to (i) integrate more ML
forecasting algorithms; and (ii) adapt solutions of wireless
controlled AGVs [36] [33] to remotely controlled robotic
arms, and compare their performance against FoReCo in
IEEE 802.11 wireless channels.

ACKNOWLEDGMENT

This work has been partially funded by European Union’s
Horizon 2020 research and innovation programme under grant
agreement No 101015956, and the Spanish Ministry of Eco-
nomic Affairs and Digital Transformation and the European
Union-NextGenerationEU through the UNICO 5G I+D 6G-
EDGEDT and 6G-DATADRIVEN

APPENDIX

A. Box-Jenkins methodology

In this appendix we show how we applied the Box-Jenkings
methodology [44] to decide that VAR with autoregression
(AR) order of 10 was the most appropriate model to infer
future robot commands ĉi+n. In the following, we apply the
three stages of the Box-Jenkins methodology in our problem:

1) Model identification: the robot trajectory time series is
i) stationary; ii) non-seasonal; iii) with causality; and iv)
co-integration across the robot axis. Hence, Vector Au-
toregressive Moving Average (VARMA) is an adequate
method to infer future commands – see [45]. Below we
detail why properties i)-iv) are satisfied:
i) the time series is stationary because the null-hypothesis

(non-stationary) of the Augmented Dickey-Fuller
test [46] is rejected with significance level α = 0.05.
Actually, the test yielded p-values in the range of
p ∈ [−3.71 ·10−13,−1.52 ·10−26] for every robot axis;

ii) the time series is not seasonal, for the robot operator
sometimes takes more time to repeat the pick and place
tasks, and all the actions are not exactly the same,

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

jo
in

t
1

 P
A

C
F

time [s]

confidence
 interval 95%

PACF

-0.03

0

0.03

0.06

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Fig. 11: PACF of joint 1 over time. Instants outside the
confidence interval suggest possible seasonality.

-575500

-575000

-574500

-574000

0 5 10 15 20
V
A

R
M

A
 A

IC
C

MA order

AR=2
AR=4
AR=6
AR=8

AR=10

Fig. 12: VARMA accuracy using different AR and MA orders.

i.e, @T : ci = ci+nT , ∀n ∈ N. Moreover, the Partial
Autocorrelation Function (PACF) values – see Fig. 11
– drastically drop to zero and do not fall outside the
95% confidence interval. Hence, there is no evidence
of seasonality;

iii) each robot axis Granger-causes [47] the others
cl

i ∼ cl′
i , ∀l, l′ because the null-hypothesis (no Granger-

causality) of the Granger-causality test was rejected
with significance level α = 0.05. Indeed, the test
yielded p-values p≤ 0.0144 when it checked Granger-
causality between every pair of axis;

iv) the robot-axis time series are co-integrated, i.e.:

∀l,∃{al
i}

Tl
i : ∑

l

Tl

∑
i

cl
ia

l
i ∼ I(m), m≤min

i
{d : cl

i ∼ I(d)}

(14)
with cl

i ∼ I(d) meaning that time series of axis l has
differentiation order d. In other words, there is a linear
combination of the robot axis time series with order
of integration below the order of integration of each
robot axis individually. In our experiments we used
the co-integration Johanson’s test [45], and proved
that (14) holds because we sequentially rejected the
null hypotheses of having k = 0,k ≤ 1, . . . ,k ≤ 5 co-
integrating vectors with significance level α = 0.05.

2) Parameter estimation: after identifying VARMA as a
suitable model, we have to estimate its parameters for our
robot dataset. VARMA considers that future commands
ĉi+n are expressed using prior commands ci−n, n∈N; and
that regression residuals εi+1 equal a moving average of
prior residuals εi−n, n ∈ N. Following §IV-B notation,

Authorized licensed use limited to: UNIVERSIDAD CARLOS III MADRID. Downloaded on May 17,2022 at 08:23:52 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3173436, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 12

-0.004

-0.002

 0

 0.002

 0.004

 0 50 100 150 200 250 300 350 400 450

V
A

R
 R

=
1

0
jo

in
t

1
 r

e
si

d
u
a
ls

 [
ra

d
]

time [s]

Fig. 13: Joint 1 residuals for VAR with AR order R = 10.

VARMA looks as follows:

ĉk
i+1 = f k ({ĉ j}i

i−R,~w
)
= bk +

d

∑
l=1

i

∑
j=i−R

wl
i, j · ĉl

j + ε
k
i+1

+
d

∑
l=1

i

∑
j=i−M

w
′l
i, j · εl

j, k ≤ d (15)

with ~w = {{wl
i, j}i, j,l ;{w

′l
i, j}i, j,l} the weights for the

VARMA model, R the autoregression (AR) order, w
′l
i, j

the MA weights, and M the MA order.
To select the best parameters (R,M), we have trained
different VARMA models with 1≤ R≤ 10, 0≤M ≤ 10;
and compared their qualities using the Akaike Informa-
tion Criterion Corrected (AICC) [48], as authors of [49]
do. Figure 12 illustrates the AICC achieved with different
combinations of the AR and MA order. Results show that
only the least accurate models benefit from increasing
their MA order. Whilst the best models, with higher AR
order, only get worse as the MA order increases.
From Fig. 12 we conclude that (R = 10,M = 0) is the
most accurate model, i.e., the VAR model that we use
throughout the paper.

3) Statistical model checking: to check the validity of
VAR with R = 10 we run the Ljung-Box test [45], with
null-hypothesis of no correlation across the residuals of
the fitted VAR model. We could not rejected the null-
hypothesis because the obtained p-values where p > 0.99
for every axis. Therefore, the residuals of VAR with
R = 10 are not correlated. Moreover, despite some out-
liers, the residuals of all axis maintain a constant mean
and variance over time – see4 Figure 13. Hence, Box-
Jenkins methodology [44] suggests that VAR with AR
order R= 10 is an adequate estimator of future commands
ĉi+n, n ∈ N.

B. IEEE 802.11 analytical insights
In the following, we present some theoretical results about

the expected delay of a command, and the causality assump-
tion in the IEEE 802.11 scenario considered in this paper.

Lemma 1. A control command ci traversing a transport
network, and an IEEE 802.11 wireless link under interference
will experience an average delay satisfying

E [∆(ci)]≤ D+
1

1−am+2

m+1

∑
j=0

a j ·E j [∆W (ci)] , ∀ci (16)

4For the other axis residuals have the same pattern

with probability 1−am+2, and

E [∆(ci)] = ∞, ∀ci (17)

with probability am+2. m+ 2 being the maximum number of
allowed re-transmissions in IEEE 802.11 wireless links.

Proof. In case a command is not lost in the IEEE 802.11
wireless link (less than m+2 re-transmissions), if we take the
law of total probability and the analytical model in [7], the
average wireless delay is

E [∆W (ci)] =
m+1

∑
j=0

a j ·E j [∆W (ci)] , ∀ci (18)

Note that this happens with probability 1−am+2. Therefore, if
we foresee that a command is not lost, we have to rescale (18)
by 1

1−am+2
, i.e., the probability that a command is not lost.

Since we know that ∆(ci) = ∆T (ci)+∆W (ci), if we take the
expectation at both sides of the equatlity, use Assumption 1,
and the rescaled version of (18); we obtain (16).

According to [7], (17) holds because a packet is lost
∆W (ci) = ∞ in a IEEE 802.11 wireless link with probability
am+2.

Corollary 1. A control command ci traversing a transport
network, and an IEEE 802.11 wireless link under interference,
experiences an unbounded delay, that is

P
(

∆(ci)> K, ∀K ∈ R
)
> 0 (19)

Proof. In particular, Lemma 1 says that
P
(

∆(ci)> K, ∀K ∈ R
)
= am+2.

Lemma 2. In IEEE 802.11 wireless links, the causality
assumption

|∆(ci+1)−∆(ci)| ≤ |g(ci+1)−g(ci)|, ∀ci+1,ci (20)

only holds on average with probability ∑
m+1
j=0 a2

j .

Proof. We prove the lemma by cases, namely considering
the different combinations of required re-transmissions of
commands ci and ci+1.

If either command ci or ci+1 is lost (m+2 re-transmissions),
then we have with probability am+2 that equation 20 does not
hold, since either ∆W (ci) = ∞ or ∆W (ci+1) = ∞;

If ci+1 has j2 RTX, and ci has j1 RTX (with j1 < j2), then

∆W (ci+1)−∆W (ci) = |∆W (ci+1−∆W (ci)|=≤ g(ci+1)−g(ci)
(21)

We can take the expectation on the left side hand and obtain:

E [∆W (ci+1)]−E [∆W (ci)] =

Ts + j2Tcol + σ̃

j2

∑
k=0

Wk−1
2
−Ts− j1Tcol− σ̃

j1

∑
k=0

Wk−1
2

=

(j2− j1)Tcol + σ̃

j2

∑
k= j1+1

Wk−1
2

(22)

Authorized licensed use limited to: UNIVERSIDAD CARLOS III MADRID. Downloaded on May 17,2022 at 08:23:52 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3173436, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 13

with Ts the transmission time, Tcol the collision time, σ̃ the
average slot time, and Wk the kth back-off window. Based on
(22), the causality assumption does not hold, since

∃ Ts,Tcol , σ̃,Wk :

(j2− j1)Tcol + σ̃

j2

∑
k= j1+1

Wk−1
2

> g(ci+1)−g(ci) (23)

The same reasoning applies in the case j1 > j2.
If command ci required same re-transmissions as command

ci+1 (i.e. j1 = j2), then (22) E [∆W (ci+1)] = 0, and the causality
assumption (20) holds. This event occurs with probability
∑

m+1
j=0 a2

j .

Corollary 2. In IEEE 802.11 wireless links, the causality
assumption

|∆(ci+1)−∆(ci)| ≤ |g(ci+1)−g(ci)|, ∀ci+1,ci (24)

does not hold.

Proof. The causality assumption does not hold with probabil-
ity 1 (see Lemma), therefore, the causality assumption does
not hold in IEEE 802.11 wireless links.

REFERENCES

[1] D. Aschenbrenner, M. Fritscher, F. Sittner, M. Krauß, and K. Schilling,
“Teleoperation of an industrial robot in an active production line,”
IFAC-PapersOnLine, vol. 48, no. 10, pp. 159–164, 2015, 2nd
IFAC Conference on Embedded Systems, Computer Intelligence
and Telematics CESCIT 2015. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S2405896315009921

[2] P. Park, S. Coleri Ergen, C. Fischione, C. Lu, and K. H. Johansson,
“Wireless network design for control systems: A survey,” IEEE Com-
munications Surveys Tutorials, vol. 20, no. 2, pp. 978–1013, 2018.

[3] S.-Y. Lien, S.-L. Shieh, Y. Huang, B. Su, Y.-L. Hsu, and H.-Y. Wei, “5G
New Radio: Waveform, Frame Structure, Multiple Access, and Initial
Access,” IEEE Communications Magazine, vol. 55, no. 6, pp. 64–71,
2017.

[4] “IEEE Standard for Information technology–Telecommunications and
information exchange between systems Local and metropolitan area
networks–Specific requirements Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications - Redline,”
IEEE Std 802.11-2012 (Revision of IEEE Std 802.11-2007) - Redline,
pp. 1–5229, 2012.

[5] S. Vitturi, F. Tramarin, and L. Seno, “Industrial wireless networks: The
significance of timeliness in communication systems,” IEEE Industrial
Electronics Magazine, vol. 7, no. 2, pp. 40–51, 2013.

[6] P. M. Kebria, H. Abdi, M. M. Dalvand, A. Khosravi, and S. Nahavandi,
“Control methods for internet-based teleoperation systems: A review,”
IEEE Transactions on Human-Machine Systems, vol. 49, no. 1, pp. 32–
46, 2019.

[7] P. Bosch, S. Latré, and C. Blondia, “An analytical model for IEEE
802.11 with non-IEEE 802.11 interfering source,” Computer Networks,
vol. 172, p. 107154, 2020.

[8] C. Guimarães, M. Groshev, L. Cominardi, A. Zabala, L. M. Contreras,
S. T. Talat, C. Zhang, S. Hazra, A. Mourad, and A. de la Oliva, “DEEP:
A Vertical-Oriented Intelligent and Automated Platform for the Edge
and Fog,” IEEE Communications Magazine, vol. 59, no. 6, pp. 66–72,
2021.

[9] C. Guimarães, X. Li, C. Papagianni, J. Mangues-Bafalluy, L. M.
Contreras, A. Garcia-Saavedra, J. Brenes, D. S. Cristobal, J. Alonso,
A. Zabala, J.-P. Kainulainen, A. Mourad, M. Lorenzo, and C. J. Bernar-
dos, “Public and non-public network integration for 5growth industry
4.0 use cases,” IEEE Communications Magazine, vol. 59, no. 7, pp.
108–114, 2021.

[10] 5GPP and 5GIA, “The european 5G annual Journal/2021,”
https://bscw.5g-ppp.eu/pub/bscw.cgi/d424095/5G%20European%
20Annual%20Journal%202021.pdf, 2021, online; accessed 28 October
2021.

[11] A. Banchs, M. Fiore, A. Garcia-Saavedra, and M. Gramaglia, “Network
Intelligence in 6G: Challenges and Opportunities,” in Proceedings
of the 16th ACM Workshop on Mobility in the Evolving Internet
Architecture, ser. MobiArch ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 7–12. [Online]. Available:
https://doi.org/10.1145/3477091.3482761

[12] M. A. Uusitalo, M. Ericson, B. Richerzhagen, E. U. Soykan, P. Ruge-
land, G. Fettweis, D. Sabella, G. Wikström, M. Boldi, M.-H. Hamon,
H. D. Schotten, V. Ziegler, E. C. Strinati, M. Latva-aho, P. Serrano,
Y. Zou, G. Carrozzo, J. Martrat, G. Stea, P. Demestichas, A. Pärssinen,
and T. Svensson, “Hexa-x the european 6g flagship project,” in 2021
Joint European Conference on Networks and Communications 6G
Summit (EuCNC/6G Summit), 2021, pp. 580–585.

[13] J. E. Solanes, A. Muñoz, L. Gracia, A. Martı́, V. Girbés-Juan, and
J. Tornero, “Teleoperation of industrial robot manipulators based on aug-
mented reality,” The International Journal of Advanced Manufacturing
Technology, vol. 111, no. 3, pp. 1077–1097, 2020.

[14] M. Rubagotti, T. Taunyazov, B. Omarali, and A. Shintemirov, “Semi-
autonomous robot teleoperation with obstacle avoidance via model
predictive control,” IEEE Robotics and Automation Letters, vol. 4, no. 3,
pp. 2746–2753, 2019.

[15] T. Zhang, Z. McCarthy, O. Jow, D. Lee, X. Chen, K. Goldberg, and
P. Abbeel, “Deep imitation learning for complex manipulation tasks from
virtual reality teleoperation,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA), 2018, pp. 5628–5635.

[16] J. E. Solanes, A. Muñoz, L. Gracia, A. Martı́, V. Girbés-Juan, and
J. Tornero, “Teleoperation of industrial robot manipulators based on aug-
mented reality,” The International Journal of Advanced Manufacturing
Technology, vol. 111, no. 3, pp. 1077–1097, 2020.

[17] X. Li, A. Garcia-Saavedra, X. Costa-Perez, C. J. Bernardos,
C. Guimarães, K. Antevski, J. Mangues-Bafalluy, J. Baranda, E. Zeydan,
D. Corujo, P. Iovanna, G. Landi, J. Alonso, P. Paixão, H. Martins,
M. Lorenzo, J. Ordonez-Lucena, and D. R. López, “5Growth: An End-
to-End Service Platform for Automated Deployment and Management of
Vertical Services over 5G Networks,” IEEE Communications Magazine,
vol. 59, no. 3, pp. 84–90, 2021.

[18] B. H. Jafari and M. W. Spong, “Passivity-based switching control in
teleoperation systems with time-varying communication delay,” in 2017
American Control Conference (ACC), 2017, pp. 5469–5475.

[19] D. Sun, F. Naghdy, and H. Du, “Neural network-based passivity control
of teleoperation system under time-varying delays,” IEEE Transactions
on Cybernetics, vol. 47, no. 7, pp. 1666–1680, 2017.

[20] C. Ott, J. Artigas, and C. Preusche, “Subspace-oriented energy dis-
tribution for the time domain passivity approach,” in 2011 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2011, pp.
665–671.

[21] M. Franken, B. Willaert, S. Misra, and S. Stramigioli, “Bilateral telema-
nipulation: Improving the complementarity of the frequency- and time-
domain passivity approaches,” in 2011 IEEE International Conference
on Robotics and Automation, 2011, pp. 2104–2110.

[22] H. K. Khalil, Nonlinear systems. Prentice-Hall, 2002.
[23] E. Mujčić, A. Mujčić, and S. Pajazetović, “Internet-based teleoperation

using wave variables and correction of position error,” in 2016 Interna-
tional Conference on Smart Systems and Technologies (SST), 2016, pp.
219–224.

[24] D. Sun, F. Naghdy, and H. Du, “Transparent four-channel bilateral
control architecture using modified wave variable controllers under time
delays,” Robotica, vol. -1, pp. 1–17, 07 2014.

[25] ——, “Wave-variable-based passivity control of four-channel nonlinear
bilateral teleoperation system under time delays,” IEEE/ASME Transac-
tions on Mechatronics, vol. 21, no. 1, pp. 238–253, 2016.

[26] G. Niemeyer and J.-J. Slotine, “Stable adaptive teleoperation,” IEEE
Journal of Oceanic Engineering, vol. 16, no. 1, pp. 152–162, 1991.

[27] D.-H. Zhai and Y. Xia, “Adaptive control for teleoperation system with
varying time delays and input saturation constraints,” IEEE Transactions
on Industrial Electronics, vol. 63, no. 11, pp. 6921–6929, 2016.

[28] Y.-C. Liu and M.-H. Khong, “Adaptive control for nonlinear teleopera-
tors with uncertain kinematics and dynamics,” IEEE/ASME Transactions
on Mechatronics, vol. 20, no. 5, pp. 2550–2562, 2015.

[29] P. M. Kebria, A. Khosravi, S. Nahavandi, P. Shi, and R. Alizadehsani,
“Robust adaptive control scheme for teleoperation systems with delay
and uncertainties,” IEEE Transactions on Cybernetics, vol. 50, no. 7,
pp. 3243–3253, 2020.

[30] Z. Chen, F. Huang, W. Sun, J. Gu, and B. Yao, “RBF-Neural-Network-
Based Adaptive Robust Control for Nonlinear Bilateral Teleoperation
Manipulators With Uncertainty and Time Delay,” IEEE/ASME Transac-
tions on Mechatronics, vol. 25, no. 2, pp. 906–918, 2020.

Authorized licensed use limited to: UNIVERSIDAD CARLOS III MADRID. Downloaded on May 17,2022 at 08:23:52 UTC from IEEE Xplore. Restrictions apply.

https://www.sciencedirect.com/science/article/pii/S2405896315009921
https://www.sciencedirect.com/science/article/pii/S2405896315009921
https://bscw.5g-ppp.eu/pub/bscw.cgi/d424095/5G%20European%20Annual%20Journal%202021.pdf
https://bscw.5g-ppp.eu/pub/bscw.cgi/d424095/5G%20European%20Annual%20Journal%202021.pdf
https://doi.org/10.1145/3477091.3482761

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3173436, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 14

[31] A. Forouzantabar, H. Talebi, and A. Sedigh, “Adaptive neural network
control of bilateral teleoperation with constant time delay,” Nonlinear
Dynamics, vol. 67, no. 2, pp. 1123–1134, 2012.

[32] D. E. Kirk, Optimal control theory: an introduction. Courier Corpora-
tion, 2004.

[33] P. M. de Sant Ana, N. Marchenko, P. Popovski, and B. Soret, “Wireless
control of autonomous guided vehicle using reinforcement learning,” in
GLOBECOM 2020 - 2020 IEEE Global Communications Conference,
2020, pp. 1–7.

[34] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[35] G. A. Rummery and M. Niranjan, On-line Q-learning using connection-
ist systems. Citeseer, 1994, vol. 37.

[36] C. Lozoya, P. Martı́, M. Velasco, J. Fuertes, and E. Martı́n, “Simulation
study of a remote wireless path tracking control with delay estimation for
an autonomous guided vehicle,” The International Journal of Advanced
Manufacturing Technology, vol. 52, pp. 751–761, 02 2011.

[37] M. Zorzi, R. Rao, and L. Milstein, “ARQ error control for fading mobile
radio channels,” IEEE Transactions on Vehicular Technology, vol. 46,
no. 2, pp. 445–455, 1997.

[38] J. R. Jackson, “Networks of waiting lines,” Operations research, vol. 5,
no. 4, pp. 518–521, 1957.

[39] S. Chitta, I. Sucan, and S. Cousins, “Moveit![ros topics],” IEEE Robotics
& Automation Magazine, vol. 19, no. 1, pp. 18–19, 2012.

[40] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning
with Neural Networks,” in Advances in Neural Information Processing
Systems, Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Q.
Weinberger, Eds., vol. 27, 2014, pp. 3104–3112.

[41] P. P. Pham, “Comprehensive analysis of the IEEE 802.11,” Mobile
Networks and Applications, vol. 10, no. 5, pp. 691–703, 2005.

[42] G. Bianchi, “Performance analysis of the IEEE 802.11 distributed coor-
dination function,” IEEE Journal on selected areas in communications,
vol. 18, no. 3, pp. 535–547, 2000.

[43] G. I. Palmer, V. A. Knight, P. R. Harper, and A. L. Hawa, “Ciw: An
open-source discrete event simulation library,” Journal of Simulation,
vol. 13, no. 1, pp. 68–82, 2019.

[44] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series
analysis: forecasting and control. John Wiley & Sons, 2015.

[45] H. Lütkepohl, New introduction to multiple time series analysis.
Springer Science & Business Media, 2005.

[46] J. D. Hamilton, Time series analysis. Princeton university press, 2020.
[47] W. H. Greene, Econometric analysis. Pearson Education India, 2003.
[48] N. Sugiura, “Further analysts of the data by akaike’s information

criterion and the finite corrections: Further analysts of the data by
akaike’s,” Communications in Statistics-theory and Methods, vol. 7,
no. 1, pp. 13–26, 1978.

[49] P. J. Brockwell and R. A. Davis, Time series: theory and methods.
Springer Science & Business Media, 2009.

Milan Groshev received the B.S. degree in telecom-
munication engineering from the Saints Cyril and
Methodius University of Skopje, Macedonia in 2008
and the M.S. degree in telecommunication engineer-
ing from the Politecnico di Torino, Turin, Italy in
2016. He is currently pursuing the Ph.D. degree
in telematics engineering at University Carlos III
Madrid (UC3M), Spain.

His doctoral research investigates the integration
of Edge and Fog in virtual environments with ob-
jective to build lightweight, low cost and smarter

robots.

Jorge Martı́n Pérez obtained a B.Sc in mathe-
matics, and a B.Sc in computer science, both at
Universidad Autónoma de Madrid (UAM) in 2016.
He obtained his M.Sc. and Ph.D in Telematics
from Universidad Carlos III de Madrid (UC3M) in
2017 and 2021, respectively. His research focuses in
optimal resource allocation in networks, and since
2016 he participates in EU funded research projects
in UC3M Telematics department.

Carlos Guimarães is currently a Senior Technolo-
gist at ZettaScale Technology SARL (France) where
he is developing data-centric networking solutions.
Prior to that, he had worked as a Postdoctoral
Researcher at Universidad Carlos III de Madrid
(Spain), having received the M.Sc. degree in com-
puter and telematics engineering from the Univer-
sidade de Aveiro (Portugal) in 2011, and the Ph.D.
degree in computer science, in 2019, under the scope
of MAP-i Doctoral Program (Portugal).

Antonio de la Oliva received his telecommuni-
cations engineering degree in 2004 and his Ph.D.
in 2008 from the Universidad Carlos III Madrid
(UC3M), Spain, where he has been an associate
professor since then.

He is an active contributor to IEEE 802 where
he has served as Vice-Chair of IEEE 802.21b and
Technical Editor of IEEE 802.21d. He has also
served as a Guest Editor of IEEE Communications
Magazine. He has published more than 30 papers on
different networking areas.

Carlos J. Bernardos received a Telecommunica-
tion Engineering degree in 2003, and a PhD in
Telematics in 2006, both from the University Carlos
III of Madrid, where he worked as a research and
teaching assistant from 2003 to 2008 and, since then,
has worked as an Associate Professor. His research
interests include IP mobility management, network
virtualization, cloud computing, vehicular communi-
cations and experimental evaluation of mobile wire-
less networks. He has published over 70 scientific
papers in international journals and conferences. He

has participated in several EU funded projects, being the project coordinator
of 5G-TRANSFORMER and 5Growth.

Authorized licensed use limited to: UNIVERSIDAD CARLOS III MADRID. Downloaded on May 17,2022 at 08:23:52 UTC from IEEE Xplore. Restrictions apply.

