
1

Beyond Multi-access Edge Computing:
Essentials to realize a Mobile, Constrained Edge

Elisa Rojas∗, Carlos Guimarães†, Antonio de la Oliva‡, Carlos J. Bernardos‡ and Robert Gazda§
∗Universidad de Alcalá, Spain
†ZettaScale Technology, France

‡Universidad Carlos III de Madrid, Spain
§InterDigital, Inc., USA

Abstract—ETSI Multi-access Edge computing (MEC) main
purpose is to improve latency and bandwidth consumption by
keeping local traffic local while providing computing resources
near the end-user. Despite its clear benefits, the next-generation
of hyper-distributed applications (e.g., edge robotics, augmented
environments, or smart agriculture) will exacerbate latency and
bandwidth requirements, posing significant challenges to today’s
MEC deployments.

In this work, we leverage on the current study item ETSI
GR MEC 036, introducing a lightweight constrained version of a
MEC platform that can be deployed in a mobile end terminal or
in its closed locality. This work presents design options for cMEC,
and how it can untangle the aforementioned gaps while being
architectural compatible with a full-fledged MEC framework.
Finally, key use cases and still open challenges are discussed,
including recommendations to extend the current MEC standard
towards constrained environments.

I. INTRODUCTION

In the field of edge computing, whose unquestionable ben-
efits have boosted the emergence of new network services
and applications, Multi-access Edge Computing (MEC) is
the prevailing standardized framework. Under development of
the European Telecommunications Standards Institute (ETSI),
MEC is regarded as a key technology for the fulfillment of
the core Key Performance Indicators (KPIs) of 5G [1] and
beyond. Similarly to other edge computing paradigms (namely
fog computing [2] and cloudlet computing [3]), MEC aims
to decrease latency and traffic workload directed to a cloud
infrastructure, consistently breaking down communications’
latency and bandwidth utilization. In doing so, it provides clear
benefits to massive Machine-Type Communication (mMTC),
enhanced Mobile BroadBand (eMBB) and the Ultra-Reliable
Low-Latency Communication (URLLC) use cases’ families
targeted by 5G technologies [1].

Forthcoming applications, namely the next-generation of
hyper-distributed applications (e.g., edge robotics, augmented
environments, or smart agriculture), are even stricter in their
requirements, thus solely deploying MEC servers at the telco
network edge might be insufficient. In fact, there are already
scenarios in which the MEC framework prove to be limiting:

• Loss of connectivity. While on-the-move, devices might
temporally lose their connectivity. Consequently, applica-
tions supported by a MEC server cannot guarantee service
continuity. Although application relocation mechanisms
exist, they either assume that the MEC infrastructure is

deployed everywhere or that there are deployments in
aggregation points of the infrastructure, making delays
so large that the edge benefits are minimized.

• Near-zero latency applications. Computation offloading
to an edge server might also be inadequate whenever
applications require extremely low latency (i.e., sub-1ms
robotics control loop). In addition, fluctuations on the
communication would likely introduce undesirable jitter.

• Privacy and security. MEC is part of a multi-domain
ecosystem composed by several stakeholders (e.g., infras-
tructure owners, service providers, system integrators and
application developers) [4], thus placing generated data
outside of the owner’s domain. Although data privacy
and security can be enforced by its owner, offloading
functions to a MEC server increases the risk of a data
leak or unauthorized access by a third-party [5].

The aforementioned challenges can be mitigated by ex-
ploiting dynamic computational offloading techniques. Com-
plementary, integrating MEC platforms towards end-devices
or constrained devices in the close vicinity of end-users is
currently the subject of study in ETSI GR MEC 036 [6],
also devised by other Standards Development Organizations
(SDOs), such as IETF [7]. A standardized method for in-
tegrating computation at constrained devices and traditional
MEC servers, where the former preserves only subset of
MEC capabilities, enables a holistic computational offloading
while allowing resource orchestration at a finer granularity and
exploitation of MEC services.

This article aims to contribute to such a vision by proposing
the constrained MEC (cMEC) architecture, as a lightweight
design of the MEC framework. By constrained device we refer
to mobile end-devices or computational constrained mobile
devices in the close locality of end-users. cMEC considers
that constrained devices can on-board and support a subset of
MEC functional elements to expand the computational reach
of current MEC framework. MEC applications can then run
locally and/or in a remote telco MEC system. In doing so,
cMEC can take over on the applications execution whenever
the connectivity to the network cannot be sustained, whether
due to outage, mobility, or to incomplete coverage, and when
the latency towards the edge MEC system is unreliable.

The remainder of the article is structured as follows. In
Section II, we briefly describe the traditional MEC architecture
for background reference; Section III presents a set of possible

This article has been accepted for inclusion in a future issue of this magazine.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



2

Figure 1: Simplified MEC reference architecture

cMEC use cases; Section IV illustrates the novel cMEC
architecture with its general characteristic and innovations,
proposing some workflows to integrate cMEC in the current
MEC framework; the advantages and future challenges of
this integration are discussed in Section V, and Section VI
concludes the article.

II. MEC IN A NUTSHELL

The MEC framework [8] was originally designed to be
deployed at the edge with the goal of exempting end-devices
from performing tasks locally, shifting the computation to-
wards a virtualized platform of distributed elements with
orchestrating and service capabilities.

Prevailing deployment option for MEC leverages Network
Function Virtualization (NFV), which is an earlier (and thus
more mature) network virtualization technology complemen-
tary to MEC. NFV provides a standardized framework for
virtualizing network services, and its structure harmonizes
with MEC. Additionally, as NFV represents the foundation
of current 5G deployments and vendors are already exploiting
NFV production-ready solutions, it is reasonable to think that
even MEC, once sufficiently developed, would be integrated in
this variant within real deployments, with MEC applications
being treated as Virtual Network Functions (VNFs).

Figure 1 depicts a simplified architectural scheme of MEC
and that of MEC in NFV, with the main functional components
and reference points indicated. First, let us focus on the MEC
architecture; a MEC system consists of a virtualized edge
platform where MEC applications are executed and expose
some API services. The general architecture can be divided
into two levels: system level and host level. Hosts can be
multiple, and their resources are handled by the system level
components. At the system level, typically an Operational
Support Systems (OSS) tool manages the instantiation and
termination of MEC applications requested by a User Ap-
plication Lifecycle Management (LCM) Proxy (UALCMP),
receiving instructions from either an end user or a custom
portal; the presence of a MEC Orchestrator (MEO) provides
a general view on the whole MEC system, performs package
on-boarding and selects the most suitable host where to deploy
the application. At the host level, the MEC Platform Manager
(MEPM) operates directly on the lifecycle of applications,

while configuring traffic, security and DNS rules based on the
application requirements; while the MEC Platform (MEP) is
the environment that offers the MEC services to the MEC ap-
plications, and it also implements the DNS and traffic control
rules for the applications. The computational, network, and
memory resources of the platform are, eventually, managed
by the Virtual Infrastructure Manager (VIM).

As for the NFVs integration, the assumption is that both
MEPs and MECs applications are deployed as VNFs, which in
the NFVs context are the virtual bricks of software construct-
ing a specific Network Service (NS). Afterwards, the specific
MEC management entities overlapping those of the NFV
management and orchestration modules (NFV MANO) are cut
out from the MEC blocks and delegated to the corresponding
NFV functional elements. In practice, the MEPM becomes
MEC Platform Manager - NFV (MEPM-V) and the part
concerning the LCM of applications is delegated to a Virtual
Network Function Manager (VNFM). Similarly, the MEO
changes its name to Mobile Edge Application Orchestrator
(MEAO), orchestrating a particular set of VNFs (e.g., MEC
apps composing a NS) and delegating the orchestration of
resources to the NFV Orchestrator (NFVO). The virtual in-
frastructure becomes that of the NFV framework (NFVI).

The cMEC proposed architecture (see Section IV) assumes
the orchestration is held by the telco MEC deployment located
in the telco infrastructure. The cMEC framework deployed in
the constrained devices will leverage virtualization technology,
running VMs or containerized applications, orchestrated by the
integrated NFV/MEC functionality at the MEC. Hereinafter, to
distinguish between both architectures, the constrained version
will be referenced as cMEC, while the network infrastructure
version as telco MEC (tMEC), to clarify they are both MEC
frameworks following two distinct and complementary archi-
tectural approaches.

III. OVERVIEW OF USE CASES ENABLED BY CMEC
Diverse use cases have fostered the need for cMEC. This

section gathers four of the most distinctive.

A. Remote eHealth Monitoring

Remote monitoring in eHealth (e.g., on-board of ambu-
lances in emergency situations) requires increased service re-

This article has been accepted for inclusion in a future issue of this magazine.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



3

liability and availability while operating in very dynamic envi-
ronments [9]. Different tasks might require distinct computing
and/or data capabilities: (i) non-sensitive information can be
offloaded into any shared computing resource; (ii) sensitive
information cannot leave the vehicle and, therefore, it should
not be processed remotely; and (iii) real-time information will
need to be processed locally in the vehicle, or in a nearby
infrastructure and devices to meet the latency requirements
or lack of connectivity. While the former can be handled
by standard telco MEC mechanisms, the later two require
proper management and orchestration of local resources in
constraint devices located at the ambulance or medical devices
within it. Such requirements hinder a full end-to-end service
provisioning by the standard MEC framework, requiring tMEC
to take into consideration the capabilities of constraint devices
in the ambulance. This consideration is currently out of the
capabilities of ETSI MEC.

B. Zero-latency Augmented and/or Virtual Reality (AR/VR)
applications

AR/VR applications are increasingly being adopted by
both enterprise and end-customer domains to bring complete
immersive experiences in numerous use cases (e.g., metaverse,
360 videos, or gaming). Since these applications are sensitive
to human perception, they impose strict requirements in terms
of latency in order to achieve accurate movements. Moreover,
high computation power is also required to smoothly render
virtual scenes. Although MEC appears as a suitable candidate
to fulfil both requirements, it needs continuous connectivity
between the user device and the MEC application in the telco
edge, where any slight disruption will shatter the AR/VR
user experience. In addition, any unexpected load in the link
connecting the AR/VR application and the edge deployment
may impact seriously on the user experience. A combination
of both local and remote processing can be seen as a fall-
back solution: the tMEC resources are leveraged for high-
resolution tasks, while on-device resources (mobile terminals,
VR headsets, etc.) are responsible for lower-resolution tasks,
triggered only if the offloaded computation arrives too late, or
to intercede in case of connectivity failures. In addition, local
devices can directly exchange information with nearby entities
to enhance or enable new types of services (e.g., improve
spatial coordinate-based scenes).

C. Smart Agriculture in Rural Areas

Smart agriculture presents a challenging use case to be
supported by MEC, especially when it takes place in remote
rural areas where connectivity is scarce and limited to specific
points. In addition, isolated areas without permanent popula-
tion (e.g., highly dense forests or Arctic areas) pose significant
challenges for building a physical network infrastructure [10].
Therefore, the lack of a reliable connection towards a tMEC
system hinders its utilization for applications that require a
continuous synchronization and control. Resource-constrained
platforms (e.g., Unmanned Aerial Vehicles (UAVs), harvesters,
tractors, etc.) operating in remote areas could be transformed
into functional mobile compute nodes, offering computing,

storage and network resources under the control of MEC
system to support the execution of applications, or interact
with small servers deployed across the fields using radio
access technologies [11]. Notwithstanding, supporting a MEC
system (with all its complexity) on such battery-powered and
resource-constrained devices exceeds the required functionali-
ties and, consequently, reduces their lifespan between charges.

D. Advanced Collaborative Surveillance

Smart surveillance systems in cities are already envisioned
for traditional MEC systems [12], where applications send
their streams to a centralized server to be processed. How-
ever, a centralized solution is not only inefficient for such
application, but also results in huge data traffic overhead.
Several solutions implement on-board pre-processing as a way
to reduce the traffic crossing the network. Such approaches
hinder more dynamic scenarios where the location of cameras
is changing, the application requires periodic updates, or where
the surveillance resources are shared among different tenants
(e.g., different departments of the city hall), each with different
levels of access. Since cameras are not part of the MEC
system, such actions must be performed via traditional (and
manual) redeployment and reconfiguration procedures across
the entire surveillance system. Integration of such devices into
the MEC would ease updates while enabling its automation.

All previous use cases share a common requirement: con-
strained devices should support MEC functional elements on
board to enable end-to-end management and orchestration of
services. Notwithstanding, such requirement does not prevent
task offloading to a tMEC system when local devices are not
capable of efficiently running the task or when the require-
ments are more relaxed. With a consistent and flexible archi-
tecture to enable the integration of all the available resources
in the entire cloud-to-things continuum, resource harvesting
could be pooled together to enable a full and dynamic service
provisioning between multiple and heterogeneous devices.
Consequently, the proposed cMEC architecture aims to build
the necessary adaptation to support MEC functional elements
in constrained devices and provide a set of interfaces to
interconnect both cMEC and ETSI standard tMEC.

IV. THE PROPOSED CMEC ARCHITECTURE

The pervasiveness of resources available in the end-user do-
main provide diverse computing and data capabilities. Conse-
quently, they appear as a promising complement to traditional
MEC systems in order to support novel latency and/or data
sensitive applications. Still, such resources mostly comprise
constrained devices with limited computational power, battery-
powered and/or mobile, therefore hindering a straightforward
support of full-fledged MEC solutions.

The cMEC architecture defines a lightweight design of
MEC capabilities by extending the cloud-edge-user-layer ar-
chitectural model with a new layer representing the user-
domain devices (as depicted in Figure 2). The inclusion of
this additional layer should be transparent to developers and
users, handling its complexity the MEC system and its APIs.

This article has been accepted for inclusion in a future issue of this magazine.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



4

Figure 2: The 4-layer architecture: User-cMEC-tMEC-Cloud

A. From a 3-Layer to a 4-Layer Architectural Model

The cMEC departs from ETSI MEC framework and presents
characteristics tailored and specific to constrained devices:

Lightweight Functionalities: The cMEC can be deployed
as a full-fledged MEC system (i.e., including all its functional
elements), but the limited resources available in the devices
might impose the support of only a subset of the MEC
functionalities. As an example, the MEO comprises resource-
demanding functions as it is responsible for deciding in which
host applications will be deployed. This might exceed the
capabilities of the end-user devices, not being considered a
primary function particularly in environments where cMEC
and tMEC collaborate (as tMEC might provide that orches-
tration instead). Thus, it will be opt-out in most constrained
situations, unless a lightweight operation can be provided.

A Layered Approach: As tMEC relies on the cloud for
computational offloading, content fetching, user authentica-
tion, and context, cMEC relies on the tMEC for the same
purposes. Such a layered approach should depend on an
interconnection relation between the cMEC and tMEC, disre-
garding the implementation of federation concepts that imply
explicit business agreements and rely on orchestrators. In
fact, according to the study on inter-MEC system connection
and federation [13], MEO is considered the key enabling
element for many workflows, but cMEC may not support
it. Notwithstanding, a given cMEC can decide on sharing
different resources with distinct tMECs, using its orchestrating
capabilities, or even peer cMECs.

Dependency from a tMEC System: Whenever the cMEC
does not implement a specific MEC function, it needs to rely
on the upper-layer tMEC system to offer the missing func-
tionalities. Novel workflows, MEC application development
guidelines, and specific interconnection mechanisms must then
be implemented to compensate for the absence of functions.

End-User Device Co-location and Awareness: The cMEC
system can be co-located in the same end-user device as the
MEC application or it can run in a constraint device in its close
proximity. The end-user device can take part of the cMEC
integration as follows:

1) cMEC-aware: end-user device and cMEC are in the same
local network or their identity is known to each other
(e.g., the cMEC runs on that end-user device). The end-
user device can inspect the cMEC systems available and

request the instantiation of a MEC application, which in
turn triggers the interconnection of the cMEC to a tMEC.

2) cMEC-unaware: end-user device is not aware of a nearby
cMEC and therefore requests the instantiation of a MEC
application towards the tMEC. The tMEC, knowing there
is a cMEC deployment near the user, decides to instanti-
ate the application on an interconnected cMEC.

OSS: The OSS is a service provider tool operated at the
MEC level and shall not necessarily be linked to a subordinate
local cMEC for application on-boarding and instantiation.
These actions, traditionally performed by a network manager
operating on the MEC through the OSS, may need to be initi-
ated by the end user (e.g., requesting a particular application
for their house or car), and handled by the cloud and the tMEC
remote OSS and MEO, employing alternative workflows sup-
porting a new set of cross-system MEC interfaces. That means
interfaces Mx2 and Mm8 in Figure 1 should be enhanced to
allow users to trigger new instantiations.

B. Architectural scheme for cMEC and tMEC interconnection

Given the aforementioned points, Figure 3 details the ar-
chitectural scheme to interconnect the cMEC with the tMEC,
without the MEO being present in the cMEC system. The
cross-system reference points inter-Mm2 and inter-Mm3 are
mainly introduced for the cMEC-tMEC interconnection setup.
Mx2 reference point is extended to allow users to trigger the
lifecycle management (e.g., instantiation, deletion, or update)
of MEC applications in a cMEC or even a tMEC. Thus, the
inter-Mx2 interface, which connects the cMEC app proxy to
that of the tMEC, can guarantee a certain level of concurrence
between the cross-systems applications (i.e., those applications
distributed across several layers), and allow any request to be
propagated from cMEC up to the tMEC. Finally, Mp1 refer-
ence point, which connects the MEC applications and services
and their platform within each other, should be extended as
a inter-Mp1 reference point for service consumption and app-
to-app communications between different systems.

C. High-level cMEC workflows

The integration of cMEC with a tMEC requires additional
workflows. In the following, three key operations are de-
scribed: (i) discovery and interconnection; (ii) application on-
boarding and instantiation; and (iii) service availability and
consumption.

1) Discovery and Interconnection: The cMEC discovery by
the tMEC or by other cMEC systems is a necessary step to
their interconnection. It consists of either (i) making a tMEC
system aware of a the cMEC; or (ii) discovering peer cMECs.
Moreover, the cMEC does not support orchestration (i.e., it
does not comprise a MEO element). At the same time, cMEC
can be co-located in an end-user device. The challenge for an
end-user device to discover a nearby standalone cMEC is left
outside of the scope of this work, since multiple protocols (not
directly related to ETSI MEC) can serve this purpose.

The message workflow for a cMEC to advertise itself to
a tMEC is presented within the box titled Discovery and
Interconnection of Figure 4. The cMEC reaches out to the

This article has been accepted for inclusion in a future issue of this magazine.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



5

Figure 3: Architectural scheme of cMEC together with tMEC

UALCMP of the tMEC it wants to integrate with, by issuing
a Request for Integration message (step 1), through which
the cMEC advertises the interfaces and the computational
capabilities (i.e., computing, storage and network resources,
MEC services, etc.) to be shared (step 2). The OSS can
then update the catalogue of interconnections with this new
information (step 3), as cMECs rely on tMEC MEO for
coordination. Afterwards, the cMEC can proceed to send the
agreed interface addresses (step 4).

After signalling between the cross-system interfaces (OSS
contacting cMEPM through inter-Mm2 and MEO contacting
cMEP through inter-Mm3) to check interconnectivity (step 5),
the process is finalized when the interconnection is activated in
the OSS (step 6). An activation step is necessary as the cMEC
can move away from the tMEC during the procedure. Finally,
the MEO module adds the cMEC to its host list (step 7), so
that, if granted permissions, the cMEC host can be selected by
the orchestrator for application on-boarding and instantiation.

2) Application On-boarding and Instantiation: In standard
ETSI MEC, the package on-boarding request for an application
is initiated by the operator interacting with the OSS. Then,
the actual application instantiation is subject to the MEO’s
decision, which normally evaluates the application require-
ments and performs host selection accordingly. As previously
mentioned, a cMEC host connected to a tMEC, becomes a host
of the tMEC system, so that it can be automatically selected
by the MEO for application deployments when needed. As
illustrated in the box titled Application On-boarding and
Instantiation of Figure 4, the cMEC Device App contacts
the tMEC UALCMP, which solicits the OSS to grant the on-
boarding permissions. The same on-boarding request would
then reach the MEO (step 1). At this point, the MEO would
have, according to the current standard, to perform host
selection. The current specification does not define how host
selection is realized in practise. In such case, the cMEC

could request the MEO to select the desired cMEC, and
not an arbitrary host of the tMEC system selected by the
MEO’s algorithm. The actual package on-boarding and app
instantiation processes are later triggered by the MEO in the
cMEPM through the inter-Mm3 reference point (step 2).

3) Service Availability and Consumption: A MEC appli-
cation, whether deployed in a cMEC or a tMEC, might also
request a MEC service not locally available. As the Service
Availability and Consumption box of Figure 4 represents, this
can be tackled by issuing a service request to the OSS (step
1), followed by a lookup in the catalogue of interconnections
(step 2). The lookup goal is to identify if a service is available
in a cMEC or tMEC, which would then communicate the
availability details (step 3) to the MEC application. If the
requesting MEC (cMEC or tMEC) is not interconnected to
the target MEC, the interconnection is invoked by the MEO
or the OSS. The service consumption between the MEC
application and the remote service can then occur via the
inter-Mp1 interface (step 4). Alternatively, a dedicated service
management proxy can be introduced in every cMEC to
manage service availability. However, it prevents the cMEC to
benefit from remote services belonging to cMEC systems not
directly interconnected: proxies must be known to the cMECs
in advance. A last option can rely on sending queries about
service availability directly towards the MEO, which then
queries each of the cMEPMs and provides an answer based
on the information stored in their cMEP’s service registries.

V. CMEC ADVANTAGES

cMEC paves the way to novel opportunities of deploying
tailored and optimized applications across the cloud-to-thing
continuum, but it also imposes new challenges to be tackled.

A. Why extend MEC to contrained end-devices?
• Virtualization and orchestrating capabilities:

Microservice-containerized architectures are becoming
predominant for embedded and constrained device
applications. Having a MEC-compliant system on board
of such devices can support the management of many
different concurrent and distributed applications.

• Services: Developers can design more efficient and flex-
ible applications. cMEC applications can be deployed as
services with great flexibility.

• Application lifecycle management: The lifecycle man-
agement of applications in mobile/constrained devices
becomes automated and flexible thanks to the functional
elements encompassed in the MEC framework.

B. Which added value will cMEC adoption bring?
• Lower latency: The edge computing paradigm is built

on the assumption that execution of heavy computational
tasks should be offloaded. However, cMEC is founded
on the fact that more gain would be achieved if the
computational capacity were further spread among end-
user devices, even if less powerful than the edge. This can
benefit applications with stringent latency requirements
and reduction in back-haul bandwidth utilization.

This article has been accepted for inclusion in a future issue of this magazine.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



6

Figure 4: High-level cMEC workflows

• Better bandwidth utilization: tMECs will be overloaded
when massive offloading of computational tasks to the
edge occur, as envisioned by future applications. cMEC
enables the pervasiveness of available resources in the
end-user domain to seamlessly share their resources with
the edge, not only distributing the computation load but
also the bandwidth utilization across network segments.

• Enhanced reliability and resilience: Partitioning the
intelligence of the network and locating parts of it on
cMEC devices close to its consumer, drastically reduces
losses or application disruption since local functions can
be run even without connection to network infrastructure.

• Increased security and privacy: For applications han-
dling sensitive information (e.g., eHealth), security and
privacy is of paramount importance. cMEC tackles this
requirement at its root by enabling MEC applications to
run on end-user devices where sensitive information is
generated. However, if devices are owned by different
stakeholders, additional mechanisms should be imple-
mented to grant enhanced security.

C. Which challenges are still ahead?

• Dynamic and distributed infrastructure: Since cMEC
can handle mobile and/or battery-powered end-devices,
devices are likely to join or leave the computing in-
frastructure or migrate to a different location. Such oc-
currence will continuously change the topology of the
infrastructure and its computational capabilities in a given
area. In doing so, the operation of applications running
therein, or even the entire E2E application, will get
disrupted. The integration of cMEC and tMEC must
envision mitigation mechanisms, either by requiring a
new set of connectivity requirements to be defined, or
by enforcing migration or fallback mechanisms.

• Heterogeneity of devices: cMEC requires handling het-
erogeneity of end-devices with distinct computing, stor-
age, and networking capabilities, not only making it
more complex to manage the infrastructure but also to
orchestrate E2E applications. In order to reduce such
complexity, the cMEC should apply an abstraction layer
when interacting with tMEC.

This article has been accepted for inclusion in a future issue of this magazine.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



7

• Distributed orchestration: The architectural design of
cMEC facilitates flat-hierarchy deployments. As the
cMEC does not include an orchestrator, further studies
should be performed on, for instance, auction-based fed-
eration solutions [14], in which no business agreements
are required between peers, which could serve as a dy-
namic solution for cMEC to join a larger tMEC domain.

• Ownership of end-devices: End-devices managed by
cMEC and attached to existing tMEC systems are con-
sidered third-party nodes that do not belong to the MEC
provider. Therefore, the MEC provider is limited in terms
of management and control procedures that can be used,
making the fulfilment of the applications’ requirements
more complex. The request for a cMEC to be part of a
tMEC system might require dynamic agreements (e.g.,
by means of resources federation mechanisms) so that
the entire system can become more flexible and react
faster to changes. Still, such agreements must also enforce
monitoring and auditing capabilities so that a break in any
E2E application SLAs can be identified and accountable.

• Security and trust: cMEC requires applications to run
on end-devices which trustfulness cannot be guaranteed.
Thus, the runtime environment for cMEC must provide a
certain level of isolation and encapsulation in order to re-
duce the surface attack. Moreover, security requirements
must be considered by the MEO whenever deciding on
the orchestration of E2E applications. If end-devices are
self-managed by users, they can be considered safe to
their own applications or services.

VI. CONCLUSION

In this article, we presented a novel MEC variant for mobile
and constrained devices named cMEC, envisioned as a holistic
solution to enable MEC capabilities down to end-devices.
Although many works already exist in the literature about
distributed edge computing, most focus on specific scenarios
(e.g., optimizing task offloading in MEC and cloud) and
none provides an integrated solution aligned with industry
requirements. This work presents an architectural solution
devoted to accomplish them, along with an analysis of its
main benefits and challenges ahead. As future work, a proof-
of-concept of cMEC will be implemented and evaluated for a
quantitative evaluation and the verification of its added value.

VII. ACKNOWLEDGEMENT

This work received support from the EU’s Horizon 2020
research and innovation programme under grant agreement ID
no. 101070177 (ICOS), and European Union’s Horizon Europe
research and innovation programme under grant agreement
No 101095759 (Hexa-X-II). It was also funded by grants
from Comunidad de Madrid through project MistLETOE-
CM (CM/JIN/2021-006), by project ONENESS (PID2020-
116361RA-I00) of the Spanish Ministry of Science and In-
novation, by the “Ayudas para la Recualificación del Sistema
Universitario Español 2021-2023” program of Universidad
de Alcala, and by the Spanish Ministry of Economic Af-
fairs and Digital Transformation and the European Union-
NextGenerationEU through the UNICO 5G I+D 6G-EDGEDT.

BIOGRAPHIES

Elisa Rojas (M.Sc.’2009, Ph.D.’2013) is an Assistant Pro-
fessor at Universidad de Alcalá (UAH). She is an ambassador
of the ONF and her current research areas include SDN, NFV,
5G networks, routing algorithms, IoT, data center networks.

Carlos Guimarães (M.Sc.’2011, Ph.D.’2019) is a Senior
Technologist at ZettaScale Technology (France) where he de-
velops data-centric networking solutions. His current research
interests are computer networks and telecommunications.

Antonio de la Oliva (M.Sc.’2004, Ph.D.’2008) is an As-
sociate Professor at Universidad Carlos III Madrid (UC3M).
He is an active contributor to IEEE 802 where he has served
as Vice-Chair of IEEE 802.21b and Technical Editor of IEEE
802.21d. He has published more than 30 papers on different
networking areas.

Carlos J. Bernardos (M.Sc.’2003, Ph.D.’2006) is an As-
sociate Professor at Universidad Carlos III Madrid (UC3M).
His current research interests are network virtualization and
wireless networks. He is an active contributor to the IETF.

Robert Gazda Robert (Bob) Gazda is a Senior Director
in InterDigital’s Wireless Networking Lab. Bob is an accom-
plished engineering professional and technologist with over 20
years of industry experience in wireless telecommunications,
networking, and embedded systems. At InterDigital, Bob leads
research and innovation focused on 5G/6G Distributed and
Converged Computing and Communications Architectures.

REFERENCES

[1] S. Kekki, W. Featherstone, Y. Fang, P. Kuure, A. Li, A. Ranjan,
D. Purkayastha, F. Jiangping, D. Frydman, G. Verin et al., “MEC in
5G Networks,” ETSI white paper, vol. 28, pp. 1–28, 2018.

[2] M. Iorga, L. Feldman, R. Barton, M. J. Martin, N. S. Goren, C. Mah-
moudi et al., “Fog Computing Conceptual Model,” 2018.

[3] M. Babar, M. S. Khan, F. Ali, M. Imran, and M. Shoaib, “Cloudlet
Computing: Recent Advances, Taxonomy, and Challenges,” IEEE Ac-
cess, vol. 9, pp. 29 609–29 622, 2021.

[4] D. Sabella, A. Reznik, K. R. Nayak, D. Lopez, F. Li, U. Kleber,
A. Leadbeater, K. Maloor, S. B. Mary Baskaran, L. Cominardi, C. Costa,
F. Granelli, V. Gazis, F. Ennesser, and X. Gu, “MEC Security: Status of
Standard Supports and Future Evolutions,” ETSI white paper, vol. 46,
pp. 1–26, 2021.

[5] J. Zhang, B. Chen, Y. Zhao, X. Cheng, and F. Hu, “Data Security
and Privacy-preserving in Edge Computing paradigm: Survey and Open
Issues,” IEEE access, vol. 6, pp. 18 209–18 237, 2018.

[6] DGR/MEC-0036ConstrainedDevice, ETSI Std. v3.0.4 Draft, 2021.
[7] IoT Edge Challenges and Functions, IETF Std. draft-irtf-t2trg-iot-edge-

08, 2023.
[8] GS MEC 003: Multi-access Edge Computing (MEC); Framework and

Reference Architecture, ETSI Std. v2.2.1, 2020.
[9] J. Islam, T. Kumar, I. Kovacevic, and E. Harjula, “Resource-Aware Dy-

namic Service Deployment for Local IoT Edge Computing: Healthcare
Use Case,” IEEE Access, vol. 9, pp. 115 868–115 884, 2021.

[10] A. M. Cavalcante, M. V. Marquezini, L. Mendes, and C. S. Moreno, “5G
for Remote Areas: Challenges, Opportunities and Business Modeling for
Brazil,” IEEE Access, vol. 9, pp. 10 829–10 843, 2021.

[11] V. Sanchez-Aguero, I. Vidal, F. Valera, B. Nogales, L. L. Mendes,
W. Damascena Dias, and A. Carvalho Ferreira, “Deploying an NFV-
based Experimentation Scenario for 5G Solutions in Underserved Ar-
eas,” Sensors, vol. 21, no. 5, p. 1897, 2021.

[12] GS MEC 002: Multi-access Edge Computing (MEC); Phase 2: Use
Cases and Requirements, ETSI Std. v2.1.1, 2018.

[13] GR MEC 035: Multi-access Edge Computing (MEC); Study on Inter-
MEC systems and MEC-Cloud Systems Coordination, ETSI Std. v3.1.1,
2021.

[14] K. Antevski and C. J. Bernardos, “Federation of 5G Services Using
Distributed Ledger Technologies,” Internet Technology Letters, vol. 3,
no. 6, p. e193, 2020.

This article has been accepted for inclusion in a future issue of this magazine.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


