5,140 research outputs found

    Dynamic RKKY interaction in graphene

    Full text link
    The growing interest in carbon-based spintronics has stimulated a number of recent theoretical studies on the RKKY interaction in graphene, based on which the energetically favourable alignment between magnetic moments embedded in this material can be calculated. The general consensus is that the strength of the RKKY interaction in graphene decays as 1/D3 or faster, where D is the separation between magnetic moments. Such an unusually fast decay for a 2-dimensional system suggests that the RKKY interaction may be too short ranged to be experimentally observed in graphene. Here we show in a mathematically transparent form that a far more long ranged interaction arises when the magnetic moments are taken out of their equilibrium positions and set in motion. We not only show that this dynamic version of the RKKY interaction in graphene decays far more slowly but also propose how it can be observed with currently available experimental methods.Comment: 7 pages, 2 figures, submitte

    An all-order proof of the equivalence between Gribov's no-pole and Zwanziger's horizon conditions

    Get PDF
    The quantization of non-Abelian gauge theories is known to be plagued by Gribov copies. Typical examples are the copies related to zero modes of the Faddeev-Popov operator, which give rise to singularities in the ghost propagator. In this work we present an exact and compact expression for the ghost propagator as a function of external gauge fields, in SU(N) Yang-Mills theory in the Landau gauge. It is shown, to all orders, that the condition for the ghost propagator not to have a pole, the so-called Gribov's no-pole condition, can be implemented by demanding a nonvanishing expectation value for a functional of the gauge fields that turns out to be Zwanziger's horizon function. The action allowing to implement this condition is the Gribov-Zwanziger action. This establishes in a precise way the equivalence between Gribov's no-pole condition and Zwanziger's horizon condition.Comment: 11 pages, typos corrected, version accepted for publication in Phys. Lett.

    A study of the Higgs and confining phases in Euclidean SU(2) Yang-Mills theories in 3d by taking into account the Gribov horizon

    Get PDF
    We study SU(2) three-dimensional Yang-Mills theories in presence of Higgs fields in the light of the Gribov phenomenon. By restricting the domain of integration in the functional integral to the first Gribov horizon, we are able to discuss a kind of transition between the Higgs and the confining phase in a semi-classical approximation. Both adjoint and fundamental representation for the Higgs field are considered, leading to a different phase structure.Comment: 12 pages. Version accepted for publication in the EPJ

    Implementing the Gribov-Zwanziger framework in N=1 Super Yang-Mills in the Landau gauge

    Get PDF
    The Gribov-Zwanziger framework accounting for the existence of Gribov copies is extended to N=1 Super Yang--Mills theories quantized in the Landau gauge. We show that the restriction of the domain of integration in the Euclidean functional integral to the first Gribov horizon can be implemented in a way to recover non-perturbative features of N=1 Super Yang--Mills theories, namely: the existence of the gluino condensate as well as the vanishing of the vacuum energy.Comment: 19 pages, no figure

    Renormalization aspects of N=1 Super Yang-Mills theory in the Wess-Zumino gauge

    Get PDF
    The renormalization of N=1 Super Yang-Mills theory is analysed in the Wess-Zumino gauge, employing the Landau condition. An all orders proof of the renormalizability of the theory is given by means of the Algebraic Renormalization procedure. Only three renormalization constants are needed, which can be identified with the coupling constant, gauge field and gluino renormalization. The non-renormalization theorem of the gluon-ghost-antighost vertex in the Landau gauge is shown to remain valid in N=1 Super Yang-Mills. Moreover, due to the non-linear realization of the supersymmetry in the Wess-Zumino gauge, the renormalization factor of the gauge field turns out to be different from that of the gluino. These features are explicitly checked through a three loop calculation.Comment: 15 pages, minor text improvements, references added. Version accepted for publication in the EPJ
    • …
    corecore