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Abstract The Gribov–Zwanziger framework accounting
for the existence of Gribov copies is extended to N = 1
Super-Yang–Mills theories quantized in the Landau gauge.
We show that the restriction of the domain of integration in
the Euclidean functional integral to the first Gribov horizon
can be implemented in a way to recover non-perturbative
features of N = 1 Super-Yang–Mills theories, namely the
existence of the gluino condensate as well as the vanishing
of the vacuum energy.

1 Introduction

Supersymmetry is a powerful tool in order to investigate non-
perturbative aspects of gauge field theories. Supersymmetric
gauge theories display remarkable non-renormalization fea-
tures [1–4], which follow from their holomorphicity proper-
ties [5,6]. As renewed examples, let us quote the work by
Seiberg and Witten [7] in N = 2 supersymmetric Yang–
Mills theories, in which the strong coupling regime has been
described through the electromagnetic duality mechanism
envisaged by ’t Hooft [8] and Mandelstam [9]. More recently,
Maldacena’s [10] conjecture has provided a framework to
investigate the strong coupling regime of N = 4 Super-
Yang–Mills, due to its duality with a weakly coupled super-
gravity theory in five dimensional anti-de Sitter space.

Turning to the case of pure N = 1 Super-Yang–Mills
theories, one notices similarity with QCD with one flavor of
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quarks, except for the fact that in Super-Yang–Mills gluinos
are in the adjoint representation of the gauge group. Both
theories display confinement of their fundamental degrees of
freedom, i.e. gluons and quarks in QCD and gauge field exci-
tations and gluinos in N = 1 Super-Yang–Mills. Though,
while many aspects of the non-perturbative sector of QCD
are still unknown, in the case of N = 1 SYM much progress
has been done. For instance, holomorphicity has enabled the
computation of the gluino condensate [11,12]. Moreover,
the exact beta function of theory has been evaluated [13].
Let us also quote the work by Veneziano and Yankielowicz
[14] in which the low energy effective action describing the
non-perturbative dynamics of the composite operators enter-
ing the so-called N = 1 anomaly supermultiplet has been
derived.

Concerning now non-supersymmetric gauge theories,
many efforts have been made in the last decades in order
to unravel their non-perturbative dynamics. Several aspects
of the gluon and quark confinement have witnessed a bet-
ter understanding as well as the corresponding formation of
bound states, resulting in the observed mesonic and hadronic
spectrum of QCD. Particular attention has been devoted to the
non-perturbative study of the Green functions of asymptoti-
cally free Yang–Mills theories in the infrared regime, which
cannot be described by perturbation theory. Both numeri-
cal and analytic approaches have been employed. Let us
mention, for instance, the sophisticated numerical techniques
employed in large lattice simulations to study the gluon and
quark propagators and their connection with confinement
[15–20]. From the analytic side, let us quote the study of the
Green functions through the Schwinger–Dyson and Bethe–
Salpeter equations [21,22] as well as the efforts to derive an
effective Yang–Mills Lagrangian in the infrared region by
taking into account the Gribov problem [23].

As is widely known, the existence of the Gribov copies
is related to the gauge-fixing procedure for quantizing
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Yang–Mills theories [24]; see [25,26] for pedagogical reviews.
In recent years, it has become more and more clear that
the issue of the Gribov copies is an important aspect of
the non-perturbative dynamics of Yang–Mills theories with
deep relation with confinement. Although a complete reso-
lution of the Gribov issue is still lacking,1 important results
have been obtained, resulting in the so-called Gribov [23]
and Zwanziger [28–30] set up, which allows one to take into
account the existence of the Gribov copies in a local and
renormalizable way. In this framework, the issue of the Gri-
bov copies is faced by restricting the domain of integration
in the Euclidean functional integral to the so-called Gribov
region�, which is bounded by the first Gribov horizon, where
the first vanishing eigenvalue of the Faddeev–Popov operator
shows up. Remarkably, this restriction results in a local and
renormalizable action encoding non-perturbative aspects of
the infrared dynamics of Yang–Mills theories. This action
is known as the Gribov [23] and Zwanziger [28–30] action.
More recently, a refinement of the Gribov–Zwanziger action
has been worked out by the authors [31–33], by taking into
account the existence of certain dimension two condensates.
So far, the outcome obtained by employing the Refined-
Gribov–Zwanziger (RGZ) action can be considered rather
promising. Let us give here a short overview of what has
been done. Let us start by mentioning that the gluon propaga-
tor resulting from the RGZ action exhibits complex poles and
violates the reflection positivity. This kind of two-point func-
tion lacks the Källén–Lehmann spectral representation and
cannot be associated with the propagation of physical parti-
cles. Rather, it indicates that, in the non-perturbative infrared
region, gluons are not physical excitations of the spectrum
of the theory, i.e. they are confined. Remarkably, the gluon
propagator obtained from the RGZ action turns out to be in
excellent agreement with the most recent numerical lattice
simulations done on large lattices [15,16]. Also, the RGZ
propagator has been employed in analytic calculation of the
first glueball states [34,35], yielding results which compare
well with the available numerical simulations as well as with
other approaches; see [36] for a recent account on this topic.
Recently, the RGZ propagator has been employed in the study
of the evaluation of the Casimir energy within the MIT bag
model [37]. The resulting energy has the correct expected
confining behavior. Applications of the RGZ gluon propaga-
tor at finite temperature can be found in [38,39]. Finally, in
[40,41], the issue of the Gribov copies has been addressed
in the case in which Higgs fields are present, yielding ana-
lytic findings on the hard problem of the understanding of
the transition between the confining and Higgs phases for
asymptotically free gauge theories. The output of this analy-
sis turns out to be in qualitative agreement with the seminal
work by Fradkin and Shenker [42]. All these results enable us

1 See, for instance, the recent work [27] and references therein.

to state that the issue of the Gribov copies captures nontriv-
ial aspects of the non-perturbative dynamics of Yang–Mills
theories.

It seems thus natural to extend the Gribov–Zwanziger
framework to supersymmetric Yang–Mills theories in order
to investigate their non-perturbative features. This is the goal
of the present work. More precisely, we shall extend the
Gribov–Zwanziger framework to N = 1 Super-Yang–Mills
theories quantized in the Wess–Zumino gauge with the Lan-
dau gauge-fixing condition. There are several motivations
in order to accomplish this task. The Gribov issue could
provide an understanding from a different point of view
of non-perturbative supersymmetric features like the forma-
tion of the gluino condensate, the vanishing of the vacuum
energy, the study of the states of the spectrum, etc. More-
over, similarly to the case of Yang–Mills theories, the super-
symmetric extension of the Gribov–Zwanziger could give us
a framework to investigate the confinement of the elemen-
tary degrees of freedom in N = 1 supersymmetric theories,
i.e. gauge field excitations and gluinos, through the study of
their two-point correlation functions. Let us also recall that,
nowadays, supersymmetric theories are object of increasing
investigation through numerical lattice simulations; see for
instance [43] and references therein. It is thus not unconceiv-
able that, in the near future, the analytic predictions of the
supersymmetric extension of the Gribov–Zwanziger frame-
work could be compared with numerical data, just as in the
case of Yang–Mills theories.

Although in the present work we shall limit ourselves to
discuss the case of N = 1 supersymmetric theories, let us
elaborate a little bit on the possible future perspectives that
the present investigation could open. Certainly, it would be
very interesting to extend the Gribov–Zwanziger framework
to the case of N = 2 Super-Yang–Mills, especially in view
of a possible relation with the Seiberg and Witten [7] work on
the confining phase of these theories. Also, the understand-
ing of the Gribov issue in N = 4 supersymmetric theories
could be of great relevance in order to study non-perturbative
aspects of these theories within a pure quantum field the-
ory framework and investigate a possible relationship with
Maldacena’s conjecture [10].

The present work is organized as follows. In Sect. 2 we
present the construction of the Gribov–Zwanziger framework
for N = 1 Super-Yang–Mills theories. For the benefit of the
reader, this section has been divided into several sub-sections.
After giving a short summary of the Gribov–Zwanziger the-
ory, we proceed with its N = 1 extension. The resulting
gauge field and gluino two-point functions are evaluated and
we analyze their connection with confinement. In Subsect 2.5
we discuss the formation of the gluino condensate within the
N = 1 generalization of the Gribov–Zwanziger framework.
In Sect. 3 we address the issue of the vanishing of the vacuum
energy. Section 4 collects our conclusion.
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2 Extension of the Gribov–Zwanziger framework
to N = 1 Super-Yang–Mills

2.1 A brief summary of the Gribov–Zwanziger action
in Yang–Mills theories

Let us start by giving a short overview of the Gribov [23]
and Zwanziger [28–30] framework. As already mentioned in
the Introduction, the Gribov–Zwanziger action arises from
the restriction of the domain of integration in the Euclidean
functional integral to the so-called Gribov region �, which
is defined as the set of all gauge field configurations fulfilling
the Landau gauge, ∂μ Aa

μ = 0, and for which the Faddeev–
Popov operator Mab = −(∂2δab − g f abc Ac

μ∂μ) is strictly
positive, namely

� =
{

Aa
μ; ∂μ Aa

μ

= 0; Mab = −(∂2δab − g f abc Ac
μ∂μ) > 0

}
. (1)

One starts with the Faddeev–Popov action in the Landau
gauge

SFP = SYM + Sgf , (2)

where SYM and Sgf denote, respectively, the Yang–Mills and
the gauge-fixing terms, namely

SYM = 1

4

∫
d4x Fa

μν Fa
μν, (3)

and

Sgf =
∫

d4x
(

ba∂μ Aa
μ + c̄a∂μDab

μ cb
)

, (4)

where (c̄a, ca) stand for the Faddeev–Popov ghosts, ba is the
Lagrange multiplier implementing the Landau gauge, Dab

μ =
(δab∂μ + g f acb Ac

μ) is the covariant derivative in the adjoint
representation of SU (N ), and Fa

μν denotes the field strength,

Fa
μν = ∂μ Aa

ν − ∂ν Aa
μ + g f abc Ab

μ Ac
ν . (5)

Following [23,28–30], the restriction of the domain of inte-
gration in the path integral is achieved by adding to the
Faddeev–Popov action SFP an additional term H(A), called
the horizon term, given by the following non-local expres-
sion:

H(A) = g2
∫

d4x d4 y f abc Ab
μ(x)

×
[
M−1

]ad
(x, y) f dec Ae

μ(y), (6)

where M−1 stands for the inverse of the Faddeev–Popov
operator. For the partition function one writes [23,28–30]

ZGZ =
∫
�

DA Dc Dc̄ Db e−SFP

=
∫

DA Dc Dc̄Db e−(
SFP+γ 4 H(A)−V γ 44(N 2−1)

)
, (7)

where V is the Euclidean space-time volume. The parameter
γ has the dimension of a mass and is known as the Gri-
bov parameter. It is not a free parameter of the theory. It is
a dynamical quantity, being determined in a self-consistent
way through a gap equation called the horizon condition
[23,28–30], given by

〈H(A)〉GZ = 4V
(

N 2 − 1
)

, (8)

where the notation 〈H(A)〉GZ means that the vacuum expec-
tation value of the horizon function H(A) has to be evaluated
with the measure defined in Eq. (7). An equivalent all-order
proof of Eq. (8) can be given within the original Gribov no-
pole condition framework [23], by looking at the exact ghost
propagator in an external gauge field [44].

Although the horizon term H(A), Eq. (6), is non-local,
it can be cast in local form by means of the introduc-
tion of a set of auxiliary fields, (ω̄ab

μ , ωab
μ , ϕ̄ab

μ , ϕab
μ ), where

(ϕ̄ab
μ , ϕab

μ ) are a pair of bosonic fields, while (ω̄ab
μ , ωab

μ ) are
anti-commuting. It is not difficult to show that the partition
function ZGZ in Eq. (7) can be rewritten as [28–30]

ZGZ =
∫

DA Dc Dc̄ Db Dω̄ Dω Dϕ̄ Dϕ e−SGZ , (9)

where SGZ is given by the local expression

SGZ = SYM + Sgf + S0 + Sγ , (10)

with

S0 =
∫

d4x
(
ϕ̄ac

μ

(
−∂ν Dab

ν

)
ϕbc

μ − ω̄ac
μ

(
−∂ν Dab

ν

)
ωbc

μ

+g f amb (
∂νω̄

ac
μ

) (
Dmp

ν cp)ϕbc
μ

)
, (11)

and

Sγ = γ 2
∫

d4x
(

g f abc Aa
μ

(
ϕbc

μ + ϕ̄bc
μ

))

− 4γ 4V (N 2 − 1). (12)

In the local formulation of the Gribov–Zwanziger action,
the horizon condition (8) takes the simpler form

∂Ev

∂γ 2 = 0, (13)

where Ev(γ ) is the vacuum energy defined by

e−V Ev = ZGZ. (14)
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The local action SGZ in Eq. (10) is known as the Gribov–
Zwanziger action. Remarkably, it has been shown to be
renormalizable to all orders [28–33]. This important prop-
erty of the Gribov–Zwanziger action is a consequence of a
set of Ward identities which follows from the existence of
a soft breaking of the BRST invariance induced by the Gri-
bov parameter γ . In fact, introducing the nilpotent BRST
transformations

s Aa
μ = −Dab

μ cb,

sca = 1

2
g f abccbcc,

sc̄a = ba, sba = 0,

sω̄ab
μ = ϕ̄ab

μ , sϕ̄ab
μ = 0,

sϕab
μ = ωab

μ , sωab
μ = 0,

(15)

it is immediately checked that the Gribov–Zwanziger action
exhibits a soft breaking of the BRST symmetry, as summa-
rized by the equation

sSGZ = γ 2	, (16)

where

	 =
∫

d4x
(
−g f abc(Dam

μ cm)(ϕbc
μ + ϕ̄bc

μ )

+ g f abc Aa
μωbc

μ

)
. (17)

Notice that the breaking term 	 is of dimension two in the
fields. As such, it is a soft breaking. The properties of the soft
breaking of the BRST symmetry of the Gribov–Zwanziger
theory and its relation with confinement have been object of
intensive investigation in recent years; see [45–51]. Here, it
suffices to mention that the broken identity (16) is deeply
connected with the restriction to the Gribov region �. More-
over, Eq. (16) can be translated into a set of softly broken
Slavnov–Taylor identities which ensure the all-order renor-
malizability of the action SGZ. The presence of the soft break-
ing term 	 turns out to be necessary in order to have a gluon
propagator with the desired confining properties. Though, a
set of BRST invariant composite operators whose correla-
tion functions exhibit the Källén–Lehmann spectral repre-
sentation with positive spectral densities can be consistently
introduced [52]. These correlation functions can be employed
to obtain mass estimates on the spectrum of the glueballs
[34,35].

Let us conclude this brief review of the Gribov–Zwanziger
action by noticing that the terms Sgf and S0 in expression (10)
can be rewritten in the form of a pure BRST variation, i.e.

Sgf + S0 = s
∫

d4x
(

c̄a∂μ Aa
μ + ω̄ac

μ

(
−∂ν Dab

ν

)
ϕbc

μ

)
,

(18)

so that

SGZ = SYM + s
∫

d4x
(

c̄a∂μ Aa
μ + ω̄ac

μ

(
−∂ν Dab

ν

)
ϕbc

μ

)

+ Sγ , (19)

from which Eq. (16) becomes apparent.

2.2 The N = 1 Super-Yang–Mills and its quantization

Let us now proceed by giving a few details on the quantization
ofN = 1 Euclidean Super-Yang–Mills. We shall follow [53],
where an all-order proof of the renormalization of the theory
through the BRST symmetry has been given.

In the Wess–Zumino gauge, the action of N = 1
Euclidean Super-Yang–Mills is given by the expression2

SN=1
SYM =

∫
d4x

(
1

4
Fa

μν Fa
μν + 1

2
λ̄aα(γμ)αβ Dab

μ λbβ

+ 1

2
DaDa

)
, (20)

where the gluino field, λaα , is the supersymmetric partner
of the gauge field Aa

μ. It is a Majorana spinor in the adjoint
representation of the gauge group. The auxiliary field Da is
needed for the off-shell closure of the supersymmetric alge-
bra [53]. Following [53], the most powerful and efficient way
to quantize the theory is that of constructing a generalized
BRST operator Q which collects both gauge and supersym-
metric field transformations, namely

Q = s + εαδα, (21)

where s is the usual BRST operator for gauge transforma-
tions and δα are the generators of the supersymmetric trans-
formations. The parameter εα is a constant Majorana spinor
carrying ghost number 1. It can be identified with the ghost
spinor parameter corresponding to the supersymmetry gen-
erators δα . The operator Q acts on the fields of the theory in
the following way:

Q Aa
μ = −Dab

μ cb + ε̄α(γμ)αβλaβ,

Qλaα = g f abccbλcα − 1

2
(σμν)

αβεβ Fa
μν + (γ5)

αβεβDa,

QDa = g f abccbDc − ε̄α(γμ)αβ Dab
μ (γ5)

βηλb
η,

Qca = 1

2
g f abccbcc − ε̄α(γμ)αβεβ Aa

μ,

Qc̄a = ba,

Qba = ∇ c̄a,

(22)

2 All conventions and notations as regards Euclidean N = 1 super-
symmetry can be found in the appendix of [53].
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and

QSN=1
SYM = 0, (23)

where we have introduced the translation operator ∇
∇ := ε̄α(γμ)αβεβ∂μ . (24)

It is easy to verify that the operator Q enjoys the following
important property:

Q2 = ∇ := ε̄α(γμ)αβεβ∂μ, (25)

which enables us to quantize the theory in a BRST invariant
way [53]. Equation (25) implies that the operator Q is in
fact nilpotent when acting on integrated local polynomials
in the fields. Thanks to property (25), the introduction of
the gauge-fixing term can be done by following the standard
BRST framework. Adopting the Landau gauge condition,
∂μ Aa

μ = 0, we have [53]

SN=1
gf = Q

∫
d4x

(
c̄a∂μ Aa

μ

)
, (26)

which, according to (22), reads

SN=1
gf =

∫
d4x

(
c̄a∂μDab

μ cb + ba∂μ Aa
μ

−c̄a ε̄α(γμ)αβ∂μλa β
)

. (27)

The expression (27) is the supersymmetric generalization of
the Landau gauge, as it can be inferred from the presence
of the additional term c̄a ε̄α(γμ)αβ∂μλa β which contains the
supersymmetry ghost εα as well as the gluino field λaβ .

Therefore, for the quantized BRST invariant N = 1
Super-Yang–Mills action in the Landau gauge we have

S = SN=1
SYM + SN=1

gf

=
∫

d4x

(
1

4
Fa

μν Fa
μν + 1

2
λ̄a α(γμ)αβ Dab

μ λb β

+ 1

2
D2 + ba∂μ Aa

μ

+c̄a
[
∂μDab

μ cb − ε̄α(γμ)αβ∂μλa β
] )

, (28)

and

QS = 0. (29)

As shown in [53], Eq. (29) can be translated into a set of
Slavnov–Taylor identities, ensuring the all-order renormal-
izability of N = 1 Super-Yang–Mills.

It is interesting to notice that, even though the presence
of the supersymmetry-ghost term in the action is crucial for
writing down Slavnov–Taylor identities and proving the all-
order renormalizability, the extra bilinear interaction between
the ghost field c̄ and the gluino field λ, i.e. c̄a ε̄α(γμ)αβ∂μλa β ,

has no impact on physical predictions of the theory, given by
n-point functions with zero ghost number. This is clearly
seen due to the fact that the supersymmetry ghost ε̄ has a
positive (nonzero) ghost number that cannot be compensated
by any other parameter of the theory in observable correlation
functions. Formally, this condition is implemented in any
correlation function with total ghost number zero to all orders
in ε̄, due to the ghost-number Ward identity3 for the one-
particle-irreducible generating functional � = S + O(h̄):∫

d4x

(
c
δ�

δc
− c̄

δ�

δc̄

)
+ ε̄

∂�

∂ε̄
= 0. (30)

For instance, acting on expression (30) with the test operator
δn

δA
a1
μ1 (x1)...δAan

μn (xn)
and setting all fields equal zero at the end,

one gets

ε̄
∂

∂ε̄

〈
Aa1

μ1
(x1) . . . Aan

μn
(xn)

〉
1P I

= 0, (31)

stating that the 1PI n-point Green function 〈Aa1
μ1(x1) . . . Aan

μn

(xn)〉1P I is independent from ε.

2.3 Extension of the Gribov–Zwanziger framework
to N = 1 Super-Yang–Mills theory

We are now ready to discuss the generalization of the Gribov–
Zwanziger set up to the N = 1 Super-Yang–Mills the-
ory. Owing to expression (19), for the generalization of the
Gribov–Zwanziger action to N = 1 SYM theories we have
found the following expression:

SN=1
SGZ = SN=1

SYM + Q
∫

d4x
(

c̄a∂μ Aa
μ + ω̄ac

μ

(
−∂ν Dab

ν

)
ϕbc

μ

)

+ Sγ + Sλ, (32)

where:

• SN=1
SYM is the N = 1 Super-Yang–Mills action given in Eq.

(20),
• the term Q

∫
d4x

(
c̄a∂μ Aa

μ + ω̄ac
μ (−∂ν Dab

ν )ϕbc
μ

)
is the

generalization to N = 1 of the corresponding expression
of Eq. (19), i.e. s

∫
d4x

(
c̄a∂μ Aa

μ + ω̄ac
μ (−∂ν Dab

ν )ϕbc
μ

)
,

where the BRST operator s has been replaced by the gen-
eralized operator Q. The Q-transformations of the auxil-
iary localizing fields (ϕ̄ac

μ , ϕac
μ , ω̄ac

μ , ωac
μ ) are given by

Qϕac
μ = ωac

μ

Qωac
μ = ∇ϕac

μ

Qω̄ac
μ = ϕ̄ac

μ

Qϕ̄ac
μ = ∇ω̄ac

μ ,

(33)

3 The same argument holds for the Gribov–Zwanziger extended theory
to be presented below, due to the presence of an extended ghost-number
Ward identity.
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so that the property (25) is preserved, i.e.

Q2 = ∇. (34)

• Sγ is the horizon term in its local form, Eq. (12), namely

Sγ = γ 2
∫

d4x
(

g f abc Aa
μ

(
ϕbc

μ + ϕ̄bc
μ

))

− 4γ 4V (N 2 − 1). (35)

As already mentioned in the previous subsection, this term
follows from the restriction of the domain of integration to
the Gribov region �, needed in order to take into account
the Gribov copies affecting the Landau gauge condition
∂μ Aa

μ = 0. It is worth underlining here that the expres-
sion of the horizon function, Eq. (6), and of the related
gap equation, Eq. (8), remain the same in supersymmetric
theories, since the exact ghost propagator in an external
gauge field is left unmodified by the presence of the extra
term c̄a ε̄α(γμ)αβ∂μλa β . Therefore, the all-order result of
[44] applies as well to the case of supersymmetric gauge
theories.

• The term Sλ is given by

Sλ = −1

2
M3

∫
d4x

(
λ̄aα δαβ

∂2 λaβ

)
, (36)

where, for the time being, the massive constant M is a
free parameter. The action Sλ can be seen as the super-
symmetric counterpart of the term Sγ . The introduction
of such a term can easily be justified by looking at the
explicit expression of the horizon term, Eq. (6), which,
when expanded in powers of the gauge field, has the
following form:

γ 4 H(A) = −Ng2γ 4
∫

d4x Aa
μ

1

∂2 Aa
μ

+ higher order terms (37)

from which one can appreciate the similarity with the
term Sλ. To some extent, the action Sλ is the simplest
action in the gluino field which can be introduced. As we
shall see in the following, the parameter M will play an
important role in order to recover important features of
N = 1 Super-Yang–Mills theories, namely: the existence
of a non-vanishing gluino condensate 〈λ̄λ〉 �= 0 as well
as the vanishing of the vacuum energy. Let us also point
out that, although presented in non-local form, the action
Sλ can easily be localized by means of a set of auxiliary
spinor fields. The local version of expression (36) is given
by

Sλ =
∫

d4x
[
ζ̂ aα∂2ζ a

α − θ̂aα∂2θa
α

−M3/2
(
λ̄aαθa

α + θ̂aαλa
α

)]
. (38)

Integrating out the auxiliary fields (ζ̂ aα, ζ aα, θ̂aα, θaα)

allows one to recover the expression (36). The localiz-
ing fields (ζ̂ aα, ζ aα) are bosonic while (θ̂aα, θaα) are
fermionic. They form doublets under Q transformations,
i.e.

Qθ̂a
α = ζ̂ a

α ;
Qζ̂ a

α = ∇ θ̂a
α ;

Qζ a
α = θa

α ;
Qθa

α = ∇ζ a
α , (39)

which are easily seen to preserve the property

Q2 = ∇. (40)

Let us also observe that expression (38) can be written as

Sλ = Q
∫

d4x θ̂aα∂2ζ a
α − M3/2 ×

∫
d4x

(
λ̄aαθa

α + θ̂aαλa
α

)
.

(41)

In summary, for the generalization of the Gribov–
Zwanziger action to N = 1 Super-Yang–Mills theory we
obtain the following local action:

SN=1
SGZ = SN=1

SYM

+ Q
∫

d4x
(

c̄a∂μ Aa
μ + ω̄ac

μ

(
−∂ν Dab

ν

)
ϕbc

μ

+θ̂aα∂2ζ a
α

)

+ γ 2
∫

d4x
(

g f abc Aa
μ

(
ϕbc

μ + ϕ̄bc
μ

))

− 4γ 4V (N 2 − 1) − M3/2
∫

d4x
(
λ̄aαθa

α + θ̂aαλa
α

)
.

(42)

Similarly to the case of the Gribov–Zwanziger action, see
Eq. (16), the action SN=1

SGZ exhibits a soft breaking of the Q
symmetry, namely

QSN=1
SGZ = γ 2	N=1

γ + M3/2	N=1
λ , (43)

where the soft breakings (	N=1
γ ,	N=1

λ ) are given by

	N=1
γ =

∫
d4x

(
g f abc (−Dam

μ cm +ε̄α(γμ)αβλβ
)

(
ϕbc

μ + ϕ̄bc
μ

)
+ g f abc Aa

μ

(
ωbc

μ + ∇ω̄bc
μ

))
, (44)
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	N=1
λ = −

∫
d4x

(
ζ̂ aαλa

α − θ̂a
α

(
g f abccbλcα

−1

2
(σμν)

αβεβ Fa
μν + (γ5)

αβεβDa
)

+ c.c.

)
.

(45)

It is worth to point out that the action SN=1
SGZ displays the

correct limiting behaviors:

• when the non-perturbative parameters (γ, M) are re-
moved, i.e. set to zero, expression (42) reduces to N = 1
Super-Yang–Mills action. It is easy in fact to check that
the Q-exact part of (42) depending on the localizing
fields (ω̄ab

μ , ωab
μ , ϕ̄ab

μ , ϕab
μ ) and (ζ̂ aα, ζ aα, θ̂aα, θaα) can

be integrated out giving unity,
• also, upon removal of the spinor fields λa

α , expression
(42) reduces precisely to the Gribov–Zwanziger action
SGZ, Eq. (19),

• even if being out of the aim of the present work, let us
mention that, as in the case of the Gribov–Zwanziger
action [28–33], the soft breaking identity (43) can be
converted into a set of generalized Slavnov–Taylor iden-
tities which ensure the all-order renormalizability of the
action SN=1

SGZ [54]. The details of the proof of the renor-
malizability will be reported in a separate work. Let us
limit ourselves to notice that this important feature fol-
lows from the renormalizability of the Gribov–Zwanziger
action, of the N = 1 Super-Yang–Mills theory [53] and
of actions of the type of Sλ, as discussed in [55].

2.4 The gauge field and gluino propagators

Having identified the N = 1 supersymmetric generalization
of the Gribov–Zwanziger action, Eq. (42), let us have a look
at the gauge field and gluino propagators. For the gauge field
we have a Gribov type propagator, i.e.

〈
Aa

μ(p)Ab
ν(−p)

〉
= δab

(
δμν − pμ pν

p2

)

× p2

p4 + 2Ng2γ 4 . (46)

One observes that, due to the presence of the Gribov param-
eter γ , the expression (46) exhibits complex poles:

p2

p4 + 2Ng2γ 4 = 1

2

(
1

p2 − i
√

2N gγ 2

+ 1

p2 + i
√

2N gγ 2

)
. (47)

As such, the correlation function (46) cannot be associated
to the propagation of a physical particle. Rather, this feature

is taken as evidence of the fact that the elementary gauge
field excitations described by the action SN=1

SGZ , Eq. (42), are
in fact confined [28–33,52].

In order to evaluate the propagator of the gluino, consider
the quadratic terms in the gluino fields of the action SN=1

SGZ ,
i.e.

Squad
λ =

∫
d4x

(
1

2
λ̄aα(x)

(
/∂αβ − M3δαβ

∂2

)
λaβ(x)

)
, (48)

where the auxiliary fields (ζ̂ aα, ζ aα, θ̂aα, θaα) have been
already integrated out. From expression (48), the two-point
gluino correlation function is found to be

〈
λ̄a

α(p)λb
β(−p)

〉
= δab

(
i pμ(γμ)αβ + m(p2)δαβ

)
p2 + m2(p2)

, (49)

where the momentum dependent form factor m(p2) is given
by

m(p2) = M3

p2 . (50)

Therefore, for the gluino propagator we get

〈
λ̄a

α(p)λb
β(−p)

〉
= δab

(
i p4 pμ(γμ)αβ + p2 M3δαβ

)
p6 + M6 . (51)

Again, one remarks the presence of complex poles in expres-
sion (51). Fermion propagators of the kind of (51) are fre-
quently employed in the analysis of the chiral symmetry
breaking in QCD, as they model in a good way effects of
quark confinement see, for example [56,57]. One also notices
that, due to the presence of the parameter M , the infrared
behavior of expression (51) is substantially different from
the behavior of the free spinor propagator, iγμ pμ

p2 , which is,
however, recovered in the deep ultraviolet limit,
〈
λ̄a

α(p)λb
β(−p)

〉 ∣∣∣
p→∞ ∼ δab ipμγμ

p2 . (52)

Let us conclude this section by noticing that, since we are
dealing with Majorana fermions, there is no charge con-
servation. As such, in addition to the correlation function
〈λ̄a

α(p)λb
β(−p)〉, we also have the propagators 〈λ(p)λ(−p)〉

and 〈λ̄(p)λ̄(−p)〉, given by

〈
λaρ(p)λb

β(−p)
〉
= −

(
i pμ(γμ)αβ + m(p2)δαβ

)
δabCαρ

p2 + m2(p2)
(53)

and

〈
λ̄a

α(p)λ̄bτ (−p)
〉
=

(
i pμ(γμ)αβ + m(p2)δαβ

)
δabCβτ

p2 + m2(p2)
, (54)

where Cαβ is the charge conjugation matrix.4

4 For definitions and notations we refer to Appendix A of [53].
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2.5 The gluino condensate 〈λ̄λ〉cond

Having at our disposal the expressions of the propagators, we
can employ them in order to get a first estimate of the gluino
condensate 〈λ̄λ〉cond. This will provide us with a better under-
standing of the role played by the parameter M . The gluino
condensate 〈λ̄λ〉cond is obtained by taking the trace of the
two-point correlation function 〈λ̄a

α(x)λb
β(y)〉cond at the same

space-time point, i.e. 〈λ̄λ〉cond = limx→y T r〈λ̄a
α(x)λb

β(y)〉,
where the trace is taken over both color and Lorentz indices
(a, b) and (α, β). From the expression of the gluino propa-
gator, Eq. (49), we get

〈λ̄λ〉 := lim
x→y

∫
d4 p

(2π)4 Tr
〈
λ̄a

α(p)λb
β(−p)

〉
ei p·(x−y)

= 4(N 2 − 1)

∫
d4 p

(2π)4

m(p2)

p2 + m2(p2)
. (55)

Consistently with the known properties of supersymmetric
N = 1 gauge theories, one immediately checks that, due
to the property that the charge conjugation matrix Cαβ is
traceless, the condensates 〈λλ〉cond and 〈λ̄λ̄〉cond are absent,
i.e.

〈λλ〉cond = 〈λ̄λ̄〉cond = 0. (56)

The expression (55) shows in a direct way the role played
by the mass form factor m(p2), Eq. (50), and of its deep
connection with the gluino condensate. Interestingly, a sim-
ilar expression is found in QCD for the quark condensate
〈qq̄〉cond [19,20]. Substituting expression (50) into Eq. (55),
one gets

〈λ̄λ〉cond = 4(N 2 − 1)M3
∫

d4 p

(2π)4

p2

p6 + M6 , (57)

which can be written as

〈λ̄λ〉cond = 4(N 2 − 1)M3
∫

d4 p

(2π)4

3∑
i=1

αi

p2 + m2
i

, (58)

where mi are the three cubic roots of the denominator in the
integrand of expression (57), and

α1 = −m2
1(

m2
2 − m2

1

) (
m2

3 − m2
1

) , (59a)

α2 = −m2
2(

m2
1 − m2

2

) (
m2

3 − m2
2

) , (59b)

α3 = −m2
3(

m2
1 − m2

3

) (
m2

2 − m2
3

) . (59c)

Mark that
∑

i αi m2
i = −1, as can easily be verified by work-

ing it out. Making use of the MS renormalization scheme in
d = 4 − ε and of the standard integrals

∫
dd p

(2π)d

αi

p2 + m2
i

= αi m2
i

16π2

(
ln

m2
i

μ̄2 − 1

)
− αi m2

i

16π2

2

ε
,

(60)

one gets for the gluino condensate

〈λ̄λ〉cond = 4(N 2 − 1)M3
3∑

i=1

αi m2
i

(4π)2 ×
(

ln
m2

i

μ̄2 − 1

)
.

(61)

We see thus that a non-vanishing gluino condensate is
obtained as far as the parameter M is non-vanishing. This
is the issue which will be faced in the next section, in
which the requirement of the vanishing of the vacuum
energy is employed as a powerful criterion in order to
determine M .

3 Vanishing of the vacuum energy

Let us proceed by addressing another important feature of
N = 1 supersymmetric gauge theories, namely the vanish-
ing of the vacuum energy, i.e. Ev = 0. It is a well-known
property of N = 1 supersymmetric gauge theories that they
do exhibit a vanishing vacuum energy even in presence of
a non-vanishing gluino condensate 〈λ̄λ〉cond [14]. Such an
important feature will also be reproduced in the current exten-
sion of the Gribov–Zwanziger framework to N = 1 Super-
Yang–Mills theories. The requirement of a vanishing vacuum
energy shall actually play an important role in our construc-
tion, as it will provide us a practical way of determining the
parameter M in a non-perturbative fashion.

In what follows we derive the non-perturbative vacuum
energy of the N = 1 Super-Yang–Mills theories in the
Gribov–Zwanziger framework and show the fulfillment of
the zero vacuum-energy condition in this context. The pro-
cedure follows three steps: (1) a perturbative computation, (2)
the imposition of the Gribov gap equation and (3) the zero
vacuum-energy condition. First, the vacuum energy is com-
puted as usual from the zero-field, zero-source limit of the
one-particle-irreducible generating functional �N=1

SGZ associ-
ated to the action SN=1

SGZ , Eq. (42):

Ev(γ, M, μ̄, g) = �SGZ|fields=0 , (62)

being thus, in general, a function of5 the Gribov parameter γ ,
its supersymmetric counterpart M , the renormalization scale
μ̄, and the gauge coupling g. The non-perturbative charac-
ter of the result will then be introduced by the Gribov gap
equation,

5 As argued above, due to the ghost-number Ward identity, the vacuum
energy is a physical observable with vanishing total ghost number and
is therefore independent of the supersymmetric ghost ε̄ to all orders.
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∂Ev(γ, M, μ̄, g)

∂γ 2 = 0, (63)

which fixes the Gribov parameter as γ = γ ∗(M, μ̄, g) ∝
e−const/g2

. Taking this solution for the Gribov parameter back
into the expression of the vacuum energy, one arrives at the
non-perturbative result Ev(γ

∗(M, μ̄, g), M, μ̄, g). Finally,
the vanishing of the vacuum energy of N = 1 supersymmet-
ric Yang–Mills theories becomes then a condition for fixing
M = M∗(μ̄, g), such that

Ev

(
γ ∗(M∗(μ̄, g), μ̄

)
, M∗(μ̄, g), μ̄, g

)
= 0. (64)

Having described the whole procedure, let us now turn to the
actual evaluation of the vacuum energy at leading order. For
this, we consider the quadratic terms of the action, Eq. (42)

Squad =
∫

d4x

[
1

2

(
∂μ Aa

ν∂μ Aa
ν −

(
1 − 1

α

)
∂μ Aa

ν∂ν Aa
μ

)

+ 1

2
λ̄aα

(
/∂αβ − M3δαβ

∂2

)
λaβ

+ c̄a(p)
(

p2δab
)

cb(−p) − Ng2γ 4 Aa
μ

1

∂2 Aa
μ

]

− γ 4V 4(N 2 − 1), (65)

where we have already omitted the term ∼ε̄, which does not
affect the result for the vacuum energy, and the limit α → 0
is implied in order to recover the Landau gauge condition. In
Fourier space one gets

Squad = 1

2

∫
d4 p

(2π)4

[
Aa

μ(p)

(
p2δμν −

(
1 − 1

α

)
pμ pν

+2Ng2γ 4 δμν

p2

)
Aa

ν(−p)

+ c̄a(p)
(

p2δab
)

cb(−p) + λ̄aα(p)

×
(

−i /pαβ
+ M3δαβ

p2

)
λaβ(−p)

]

− γ 4V 4(N 2 − 1). (66)

The vacuum energy is then related to the partition function
as Ev = −(1/V ) ln Zquad, with Zquad = ∫ D[fields] e−Squad .
For the partition function in the quadratic approximation, we
have

Zquad

=
∫

DADcDc̄Dλ × exp
{

− 1

2

∫
d4 p

(2π)4

[
Aa

μ(p)Pab
μν Ab

ν(−p)

+ c̄a(p)
(

p2δab
)

cb(−p) + λ̄aα(p)Qab
αβλbβ(−p)

]

+ γ 4V 4(N 2 − 1)
}
, (67)

where

Pab
μν =

(
p2δμν −

(
1 − 1

α

)
pμ pν + 2Ng2γ 4 δμν

p2

)
δab

(68)

and

Qab
αβ =

(
−i /pαβ

+ M3δαβ

p2

)
δab. (69)

Integrating over the fields one gets

Zquad =
[
det Pab

μν

]−1/2 [
det p2δab

] [
det Qab

αβ

]1/2

× exp
{
γ 4V 4(N 2 − 1)

}
,

= exp

{
γ 4V 4(N 2 − 1) − 1

2
Tr ln Pab

μν

+Tr ln p2δab + 1

2
Tr ln Qab

αβ

}
, (70)

where

Tr ln Pab
μν = (N 2 − 1)V

∫
d4 p

(2π)4

×
[

4 ln p2 + 3 ln

(
1 + 2Ng2γ 4 1

p4

)]
, (71)

Tr ln p2δab = (N 2 − 1)V
∫

d4 p

(2π)4 ln p2, (72)

Tr ln Qab
αβ = 2(N 2 − 1)V

∫
d4 p

(2π)4

×
[

ln p2 + ln

(
1 + M6

p6

)]
. (73)

Therefore, the leading order result for the vacuum energy in
the Gribov–Zwanziger framework is

Ev(γ, M) = − 1

V
ln Zquad

= −γ 44(N 2 − 1) + 3

2
(N 2 − 1)

×
∫

d4 p

(2π)4 ln

(
1 + 2Ng2γ 4 1

p4

)

− (N 2 − 1)

∫
d4 p

(2π)4 ln

(
1 + M6

p6

)
, (74)

where the vanishing of the vacuum energy for N = 1 Super-
Yang–Mills theories in the absence of the Gribov horizon,
i.e. in the limit γ, M → 0, is clear. This exact result to lead-
ing order stems from the counting of bosonic and fermionic
degrees of freedom, each contributing, respectively, with

a negative and a positive (V
∫ d4 p

(2π)4 ln p2) term in the
exponent of Eq. (70).
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The next step is to apply the Gribov gap equation [cf. Eq.
(13)],

∂Ev(γ, Mμ̄, g)

∂γ 2

∣∣∣∣
γ ∗

= 0, (75)

in order to derive the non-perturbative expression for the
Gribov parameter γ . From Eq. (74), we have

− 4 + 3Ng2
∫

d4 p

(2π)4

1

p4 + 2Ng2γ ∗4 = 0. (76)

Introducing the notation γ ′4 = 2Ng2γ ∗4, one obtains

3Ng2
∫

d4 p

(2π)4

1

p4 + γ ′4 = 4, (77)

or, equivalently (using d = 4− ε, in dimensional regulariza-
tion),

Ng2(d − 1)I d
γ = d, (78)

with

(d − 1)I d
γ

≡ (d − 1)
1

2iγ ′2

∫
dd p

(2π)d
×

(
1

p2 − iγ ′2 − 1

p2 + iγ ′2

)

= (3 − ε) × 1

(4π)2

[
2

ε
+ 1 − ln

(
γ ′2

μ̄2

)
+ O(ε)

]
. (79)

where μ̄ is the MS renormalization scale. The gap equation
then becomes, in the MS renormalization scheme,

3Ng2 1

16π2

[
− ln

γ ′2

μ̄2 + 1

3

]
= 4. (80)

The final non-perturbative expression for the Gribov param-
eter reads

√
2N [γ ∗(μ̄)]2 = μ̄2

g
e

(
1
3 − 16π2

3
4

g2 N

)
, (81)

Finally, using this result in Eq. (74), the vacuum energy for
N = 1 Super-Yang–Mills theories in the Gribov–Zwanziger
framework becomes

Ev = 7(N 2 − 1)

4(4π)2 2Ng2[γ ∗(μ̄)]4 − (N 2 − 1)

∫
d4 p

(2π)4 ln

(
1 + M6

p6

)
,

(82)

where we have used Eq. (79) and the following relation:

∫
d4 p

(2π)4 ln

(
1 + 2Ng2γ 4 1

p4

)
= 4Ng2

γ 2∫
0

d(x2)x2 I 4
x .

(83)

The remaining momentum integral in Eq. (85) is finite and
can be solved directly,

∫
d4 p

(2π)4 ln

(
1 + M6

p6

)
= 1

16
√

3π
M4, (84)

so that the final expression for the vacuum energy as a func-
tion of the parameter M reads

Ev = 7(N 2 − 1)

4(4π)2 2Ng2[γ ∗(μ̄)]4 − (N 2 − 1)
1

16
√

3π
M4.

(85)

It is now clear that there exists a nonzero solution M∗(μ̄)

which cancels out the vacuum energy produced by the pres-
ence of the Gribov parameter γ , recovering in this way
the exact supersymmetric result Ev = 0. Furthermore, as
discussed in the last section, a nonzero value of the mass
parameter M in the gluino propagator is also a necessary
condition for reproducing a well-known feature of N = 1
Super-Yang–Mills theories: the gluino condensation [cf. Eq.
(61)]. In view of these points, the modified gluino propa-
gator may be regarded as a natural requirement of a con-
sistent supersymmetric version of the Gribov–Zwanziger
formalism.

Explicitly, the vanishing of the vacuum energy gives the
following expression for M∗(μ̄, g), i.e. the supersymmetric
counterpart of the Gribov parameter:

[
M∗(μ̄)

]4 = 7
√

3

4π
γ ′4 = 7

√
3

4π
μ̄4e

2
3 − 32π2

3
4

g2 N , (86)

whereas the gluino condensate, Eq. (61), takes the form

〈λ̄λ〉cond = 4(N 2 − 1)

(
7
√

3

4π

) 3
4

γ ′3

×
3∑

i=1

αi m2
i

(4π)2

(
ln

m2
i

μ̄2 − 1

)

= 4(N 2 − 1)

(
7
√

3

4π

) 3
4

μ̄3e
1
2 −32π2 1

g2 N

×
3∑

i=1

αi m2
i

(4π)2

(
ln

m2
i

μ̄2 − 1

)
. (87)

Collecting the results for the non-perturbative parameters
that define the Gribov–Zwanziger extended supersymmetric
Yang–Mills action,
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[
γ ∗(μ̄)

]4 = 1

2Ng2 μ̄4e

(
2
3 − 32π2

3
4

g2 N

)
, (88)

[
M∗(μ̄)

]4 = 7
√

3

4π
γ ′4

= 7
√

3

4π
μ̄4e

(
2
3 − 32π2

3
4

g2 N

)
, (89)

inspection reveals that they are both related to a single non-
perturbative physical scale, currently encoded in the MS
renormalization scale. This is consistent with the fact the
theory has only one physical scale, in the same way as mass-
less QCD presents only the confinement scale �QCD. The
expressions above may also be recast in a renormalization-
scheme independent form, in terms of this non-perturbative
physical (i.e. renormalization-group invariant) scale. Making
use of the definition of such a quantity,(

μ̄
∂

∂μ̄
+ βg

∂

∂g

)
�N=1

SYM = 0, (90)

with βg ≡ μ̄ ∂
∂μ̄

g, and of the one-loop β function of N = 1

Super-Yang–Mills theories, βg = −β0
g3

(4π)2 (with β0 = 3N ;
see for instance [58]), one obtains

�N=1
SYM = μ̄e

− (4π)2
2

1
β0g2 (91)

and

[
γ ∗]4 = 1

2Ng2

(
�N=1

SYM

)4
e

(
2
3 −32π2 1

g2 N

)
,

[
M∗]4 = 7

√
3

4π

(
�N=1

SYM

)4
e

(
2
3 −32π2 1

g2 N

)
. (92)

4 Conclusion

In this work we have presented the extension of the Gribov–
Zwanziger framework to N = 1 Super-Yang–Mills theo-
ries quantized in the Wess–Zumino gauge, by imposing the
Landau gauge condition. Our construction is summarized by
the action SN=1

SGZ , given in expression (42). This action has
the meaning of an effective action encoding the restriction
to the first Gribov horizon in a way compatible with non-
perturbative supersymmetric features. This has been possible
due to the presence in expression (42) of two massive param-
eters (γ, M), which have been obtained in a dynamical way
through suitable non-perturbative conditions.

The parameter γ , determined by the gap Eq. (75), is the
Gribov parameter which arises as the consequence of the
restriction of the domain of integration in the Euclidean path
integral to the Gribov region �. The second parameter M
can be regarded as a kind of supersymmetric counterpart of
the Gribov parameter γ . Its presence is needed in order to
consistently ensure the vanishing of the vacuum energy, Eqs.

(64), (86), as required by supersymmetry. The two conditions
(75), (64) enable us to determine the two parameters (γ, M)

in a non-perturbative way, as expressed by (92). Moreover,
in agreement with supersymmetry, a non-vanishing gluino
condensate is found; see Eq. (87).

Besides recovering non-perturbative features of super-
symmetry, the action (42) is suitable to study the confine-
ment of the elementary degrees of freedom, i.e. of gluon and
gluinos, as one can infer from the presence of complex poles
in the corresponding two-point correlation functions, Eqs.
(46), (51), which can be seen as a strong indication of the
absence of these excitations from the physical spectrum.

To some extent, the action SN=1
SGZ represents the first step

in order to address the issue of the Gribov copies in super-
symmetric gauge theories, opening the possibility of inves-
tigating within a local and renormalizable field theory other
non-perturbative aspects, such as: supersymmetric general-
ization of the so-called RGZ framework, estimates of the
masses of the low lying states of the spectrum and com-
parison with the available numerical lattice data, extension
to N = 2 Super-Yang–Mills theories and study of the cor-
responding phase diagram, analysis of the Gribov issue in
N = 4 theories and investigation of a possible relationship
with Maldacena’s conjecture. We hope to report soon on these
interesting topics.
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