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Abstract

We study SU(2) three-dimensional Yang-Mills theories in presence of Higgs fields in the light of
the Gribov phenomenon. By restricting the domain of integration in the functional integral to the
first Gribov horizon, we are able to discuss a kind of transition between the Higgs and the confining
phase in a semi-classical approximation. Both adjoint and fundamental representation for the Higgs
field are considered, leading to a different phase structure.

1 Introduction

The understanding of the nonperturbative aspects of nonabelian gauge theories is one of the main chal-
lenging problems in quantum field theories. As an example, we may quote the transition between the
confining and nonconfining phases of a Yang-Mills theory in presence of Higgs fields, see refs.[1, 2, 3] for
analytical investigations and [4, 5, 6, 7, 8, 9] for results obtained through numerical lattice simulations.

In this work we aim at presenting a study of this topic by investigating 3d Yang-Mills theories in presence
of Higgs fields. Both adjoint and fundamental representation for the Higgs field will be considered. As
we shall see, they will give rise to a different phase structure.

As the title of the paper let it understand, our investigation will be carried out from the perspective
of the Gribov issue [10], i.e. by taking into account the existence of the Gribov copies which are un-
avoidably present in the gauge-fixing procedure1. In this framework, the dynamics of the model can be
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captured through the study of the two-point correlation functions of the gluon field. A Yukawa type
behavior for the gluon propagator signals that the Higgs phase takes place, while a propagator of the
Gribov type [10, 11, 12] means that the theory lies in a confining phase. We remind here that a prop-
agator of the Gribov type does not allow for a particle interpretation, as it exhibits complex poles. As
such, it is suitable for the description of a confining phase.

The phase structure of the theory turns out to be deeply related to the representation of the Higgs
field. We shall first investigate the adjoint representation, the corresponding theory being known as the
Georgi-Glashow model. For technical simplicity, we shall stick to the SU(2) gauge group here. In this
case, we shall find that the third component of the gluon field, A3

µ, is always confined, for all values of
the gauge coupling g and of the vev ν of the Higgs field. In fact, the propagator 〈A3

µ(q)A
3
ν(−q)〉 will be

always of the Gribov type, displaying unphysical complex conjugate poles. The situation looks different
for the off-diagonal components Aα

µ, α = 1, 2. In the weak coupling regime, g2 ≪ ν2, the off-diagonal

correlation function 〈Aα
µ(q)A

β
ν (−q)〉 decomposes into the sum of two Yukawa propagators with real and

positive masses. Though, only the heaviest mass component of this decomposition can be regarded as a
physical mode, as the other component has a negative residue. According to [5], this phase can be re-
ferred to as the U(1) symmetric phase: the A3

µ component is confined, while the off-diagonal, or charged,
components Aα

µ , α = 1, 2, exhibit a physical mode. This result is in agreement with Polyakov’s seminal
paper [1] on the Georgi-Glashow model, where confinement of the A3

µ component at weak coupling is
due to the contribution of classical monopole solutions whose condensation gives rise to an area law for
the Wilson loop. Moreover, in the strong coupling regime, g2 ≫ ν2, the poles of the off-diagonal com-
ponents Aα

µ become complex, the corresponding propagator being of the Gribov type. This signals that
all components of the gauge field, Aa

µ, a = 1, 2, 3, are confined. Again, according to [5], this phase can
be referred as the SU(2) confining phase, in which all gauge modes are unphysical. Essentially, in the
adjoint representation for the Higgs field, the theory exhibits two phases: the U(1) symmetric phase at
weak coupling, g2 ≪ ν2, in which only the A3

µ mode is confined, and the SU(2) confining phase at strong
coupling, g2 ≫ ν2, in which all modes get confined. These results are in agreement with the numerical
lattice simulations of [5, 6], for sufficiently large values of the quartic Higgs self-coupling. It worth notic-
ing that our results about the A3

µ component ensure the absence of a massless state, a feature consistent
with the nonperturbative dynamics of a super-renormalizable theory. In fact, according to [13], massless
3d super-renormalizable theories should develop a dynamical nonperturbative mass gap which prevents
the appearance of infrared divergences which show up in the perturbative expansion. For instance, in
[2], such a nonperturbative dynamical mass generation in the 3d Georgi-Glashow has been investigated
by adding to the original action a non-polynomial gauge invariant mass term which induces vortex type
solutions. In the present context, one might argue that the appearance of the Gribov mass parameters
whose nonperturbative generation follows from the restriction of the domain of integration to the first
Gribov horizon, gives rise to a natural mechanism for the mass gap generation in 3d super-renormalizable
nonabelian gauge theories, as already pointed out in [14]. In 4d, all couplings are dimensionless and no
a priori mass generation is required to “protect” the infrared region. One could thus expect quite some
differences between the 3d and 4d Higgs theories, the latter is therefore presented elsewhere [15].

Things change considerably when the Higgs field is in the fundamental representation. In that case
the gauge group SU(2) is completely broken. At weak coupling, g2 ≪ ν2, all propagators decompose into
a sum of two Yukawa propagators with positive masses. One of the components is unphysical due to a
negative residue. However, the component with the largest mass is physical. Therefore, at weak coupling
all gauge modes display a massive physical component. This is what can be called a Higgs phase. In the
strong coupling, g2 ≫ ν2, the propagator of all gauge modes are of the Gribov type, exhibiting complex
conjugate poles. This is the confining phase. Therefore, when the Higgs field is in the fundamental
representation, we have a weak coupling Higgs phase and a strong coupling confining phase. Again, these
results are in agreement with lattice numerical investigations [5, 6] at sufficiently large values of the Higgs
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quartic self-coupling.

The paper is organized as follows. In Section 2, after a short introduction to the Georgi-Glashow model
and to its quantization in the Landau gauge, we discuss the implementation of the restriction to the
Gribov region Ω in order to deal with the issue of the Gribov copies. This will be done by making use
of the so called Gribov no-pole condition [10, 11, 12], which we shall adapt to the presence of the Higgs
field. Further, we solve the gap equations for the Gribov parameters and we analyze the ensuing behavior
of the gluon two-point correlation functions. In Section 3 we address the case in which the Higgs field is
in the fundamental representation of SU(2). In Section 4 we collect our conclusions.

2 Higgs field in the adjoint representation. The Georgi-Glashow model

and the restriction to the Gribov region Ω

The SU(2) Georgi-Glashow model describes the interaction between gauge fields and a Higgs field Φa in
the adjoint representation. Working in Euclidean space and adopting the Landau gauge, ∂µA

a
µ = 0, the

action of the model is specified by the following expression

S =

∫

d3x

(

1

4
F a
µνF

a
µν +

1

2
Dab

µ ΦbDac
µ Φc +

λ

2

(

ΦaΦa − ν2
)2

+ ba∂µA
a
µ + c̄a∂µD

ab
µ cb

)

, (1)

where the covariant derivative is defined by

(DµΦ)
a = ∂µΦ

a + gǫabcAb
µΦ

c . (2)

The field ba stands for the Lagrange multiplier implementing the Landau gauge, ∂µA
a
µ = 0, while (c̄a, ca)

are the Faddeev-Popov ghosts. The vacuum configuration which minimizes the energy is achieved by a
constant scalar field satisfying

ΦaΦa = ν2 . (3)

Setting
〈Φa〉 = νδa3 , (4)

the Higgs field Φa can be decomposed as

Φa = ϕa + νδa3 , 〈ϕa〉 = 0 , (5)

where ϕa(x) parametrizes the fluctuations around the vacuum configuration.

Making use of the decomposition (5), for the quadratic part of the action involving the gauge field
Aa

µ, one easily obtains

Squad =

∫

d3x

(

1

4

(

∂µA
a
ν − ∂νA

a
µ

)2
+ ba∂µA

a
µ +

g2ν2

2

(

A1
µA

1
µ +A2

µA
2
µ

)

)

, (6)

from which one could argue that the naive Higgs mechanism would take place, so that the off-diagonal
components of the gluon field Aα

µ , α = 1, 2, should acquire a mass m2
H = g2ν2, i.e.

〈

Aα
µ(p)A

β
ν (−p)

〉

=
δαβ

p2 +m2
H

(

δµν −
pµpν
p2

)

, (7)

while the third component A3
µ should remain massless, namely

〈

A3
µ(p)A

3
ν(−p)

〉

=
1

p2

(

δµν −
pµpν
p2

)

. (8)
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However, as was pointed out by Polyakov [1], the theory exhibits a different behavior. The action (1)
admits classical solitonic solutions, known as the ’t Hooft-Polyakov monopoles2 which play a relevant
role in the dynamics of the model. In fact, it turns out that these configurations give rise to a monopole
condensation at weak coupling, leading to a confinement of the third component A3

µ, rather than to a
Higgs type behavior, eq.(8), a feature also confirmed by lattice numerical simulations [5, 6].

As already mentioned in the Introduction, the aim of the present work is that of analyzing the non-
perturbative dynamics of the Georgi-Glashow model by taking into account the Gribov copies. In the
Landau gauge, this issue can be faced by restricting the domain of integration in the path integral to the
so called Gribov region Ω [10, 11, 12], defined as the set of all transverse gauge configurations for which
the Faddeev-Popov operator is strictly positive, namely

Ω = {Aa
µ , ∂µA

a
µ = 0 , −∂µD

ab
µ > 0 } (9)

The region Ω is known to be convex and bounded in all directions in field space. The boundary of Ω,
where the first vanishing eigenvalue of the Faddeev-Popov operator appears, is called the first Gribov
horizon. A way to implement the restriction to the region Ω has been worked out by Gribov in his original
work. It amounts to impose the no-pole condition [10, 11, 12] for the connected two-point ghost func-

tion Gab(k;A) = 〈k|
(

−∂Dab(A)
)−1

|k〉, which is nothing but the inverse of the Faddeev-popov operator
−∂Dab(A). One requires that Gab(k;A) has no poles at finite nonvanishing values of k2, so that it stays
always positive. In that way one ensures that the Gribov horizon is not crossed, i.e. one remains inside
Ω. The only allowed pole is at k2 = 0, which has the meaning of approaching the boundary of the region Ω.

Here, it is worth noticing that monopoles configurations give rise to zero modes of the Faddeev-Popov
operator [16, 17], i.e. they are located on the Gribov horizon. To some extent, this observation provides
a connection between Polyakov’s results and those obtained by the restriction to the Gribov region.

Following Gribov’s procedure [10, 11, 12], for the connected two-point ghost function Gab(k;A) at first
order in the gauge fields, one finds

Gab(k;A) =
1

k2

(

δab − g2
kµkν
k2

∫

d3q

(2π)3
εamcεcnb

1

(k − q)2
(

Am
µ (q)An

ν (−q)
)

)

, (10)

where use has been made of the transversality condition qµAµ(q) = 0.

In order to correctly take into account the presence of the Higgs vacuum, eq.(4), we decompose Gab(k;A)
into diagonal and off-diagonal components, according to

Gab(k,A) =

(

δαβGoff (k;A) 0
0 Gdiag(k;A)

)

(11)

where

Goff (k;A) =
1

k2

(

1 + g2
kµkν
2k2

∫

d3q

(2π)3
1

(q − k)2
(

Aα
µ(q)A

α
ν (−q) + 2A3

µ(q)A
3
ν(−q)

)

)

≡
1

k2
(1 + σoff (k;A)) ≈

1

k2

(

1

1− σoff (k;A)

)

, (12)

Gdiag(k;A) =
1

k2

(

1 + g2
kµkν
k2

∫

d3q

(2π)3
1

(q − k)2
(

Aα
µ(q)A

α
ν (−q)

)

)

≡
1

k2
(1 + σdiag(k;A)) ≈

1

k2

(

1

1− σdiag(k;A)

)

. (13)

2 These configurations are instantons in Euclidean space-time.
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The quantities σoff (k;A), σdiag(k;A) turn out to be decreasing functions of the momentum k [10, 11, 12].
Thus, the no-pole condition for the ghost function Gab(k,A) is implemented by imposing that [10, 11, 12]

σoff (0;A) ≤ 1 ,

σdiag(0;A) ≤ 1 , (14)

where σoff (0;A), σdiag(0;A) are given by

σoff (0;A) =
g2

3

∫

d3q

(2π)3

(

A3
µ(q)A

3
µ(−q) + 1

2A
α
µ(q)A

α
µ(−q)

)

q2
,

σdiag(0;A) =
g2

3

∫

d3q

(2π)3

(

Aα
µ(q)A

α
µ(−q)

)

q2
. (15)

These expressions are obtained by taking the limit k → 0 of eqs.(12),(13), and by making use of the
property

Aa
µ(q)A

a
ν(−q) =

(

δµν −
qµqν
q2

)

ω(A)(q)

⇒ ω(A)(q) =
1

2
Aa

λ(q)A
a
λ(−q) (16)

which follows from the transversality of the gauge field, qµA
a
µ(q) = 0. Also, it is useful to remind that,

for an arbitrary function F(p2), we have

∫

d3p

(2π)3

(

δµν −
pµpν
p2

)

F(p2) = A δµν (17)

where, upon contracting both sides of eq.(17) with δµν ,

A =
2

3

∫

d3p

(2π)3
F(p2). (18)

2.1 Gribov’s gap equations

In order to implement the restriction to the Gribov region Ω in the functional integral, we encode the
information of the no-pole conditions into step functions [10, 11, 12]:

Z =

∫

[DAµ]δ(∂A)(detM)θ(1− σdiag(A))θ(1 − σoff (A))e
−SY M . (19)

Though, being interested in the study of the gluon propagators, we shall consider the quadratic approx-
imation for the partition function, namely

Zquad =

∫

dβ

2πiβ

dω

2πiω
DAµe

β(1−σdiag(0,A))eω(1−σoff (0,A))

× e−
1
4

∫
d3x(∂µAa

ν−∂νA
a
µ)

2− 1
2ξ

∫
d3x(∂µAa

µ)
2− g2ν2

2

∫
d3xAα

µA
α
µ , (20)

where use has been made of the integral representation

θ(x) =

∫ i∞+ǫ

−i∞+ǫ

dβ

2πiβ
eβx . (21)
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After simple algebraic manipulations, one gets

Zquad =

∫

dβeβ

2πiβ

dωeω

2πiω
DAα

µDA3
µe

− 1
2

∫ d3q

(2π)3
Aα

µ(q)P
αβ
µν A

β
ν (−q)− 1

2

∫ d3q

(2π)3
A3

µ(q)QµνA
3
ν(−q)

, (22)

with

Pαβ
µν = δαβ

(

δµν
(

q2 + ν2g2
)

+

(

1

ξ
− 1

)

qµqν + 2
g2

3

(

β +
ω

2

) 1

q2
δµν

)

,

Qµν = δµν

(

q2 − 2
ωg2

3

1

q2

)

+

(

1

ξ
− 1

)

qµqν . (23)

The parameter ξ stands for the usual gauge fixing parameter, to be set to zero at the end in order to
recover the Landau gauge. Evaluating the inverse of the expressions above and taking the limit ξ → 0,
for the gluon propagators one gets

〈

A3
µ(q)A

3
ν(−q)

〉

=
q2

q4 + 2ωg2

3

(

δµν −
qµqν
q2

)

, (24)

〈

Aα
µ(q)A

β
ν (−q)

〉

= δαβ
q2

q2 (q2 + g2ν2) + g2
(

2β
3 + ω

3

)

(

δµν −
qµqν
q2

)

. (25)

It remains to find the gap equations for the Gribov parameters (β, ω), enabling us to express them in
terms of the parameters of the starting model, i.e. the gauge coupling constant g and the vev of the
Higgs field ν. In order to accomplish this task we follow [10, 11, 12] and evaluate the partition function
Zquad in the semiclassical approximation. First, we integrate out the gauge fields, obtaining

Zquad =

∫

dβ

2πiβ

dω

2πiω
eβeω (detQµν)

− 1
2

(

detPαβ
µν

)− 1
2
. (26)

Making use of
(

detAab
µν

)− 1
2
= e−

1
2
ln detAab

µν = e−
1
2
Tr lnAab

µν , (27)

for the determinants in expression (26) we get

(detQµν)
− 1

2 = exp

[

−

∫

d3q

(2π)3
ln

(

q2 +
2ωg2

3

1

q2

)]

,

(

detPαβ
µν

)− 1
2

= exp

[

−2

∫

d3q

(2π)3
ln

(

(q2 + g2ν2) + g2
(

2β

3
+

ω

3

)

1

q2

)]

. (28)

Therefore,

Zquad =

∫

dβ

2πi

dω

2πi
ef(ω,β) , (29)

with

f(ω, β) = β + ω − ln β − lnω −

∫

d3q

(2π)3
ln

(

q2 +
2ωg2

3

1

q2

)

− 2

∫

d3q

(2π)3
ln

(

(q2 + g2ν2) + g2
(

2β

3
+

ω

3

)

1

q2

)

(30)

Expression (29) can be now evaluated in the saddle point approximation [10, 11, 12], i.e.

Zquad ≈ ef(β
∗,ω∗) , (31)
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where the parameters β∗ and ω∗ are determined by the stationary conditions

∂f

∂β∗
=

∂f

∂ω∗
= 0 , (32)

which yield the following gap equations3:

g2

2

∫

d3q

(2π)3





1

q4 + 2ω∗g2

3

+
1

q2(q2 + g2ν2) + g2
(

2β∗

3 + ω∗

3

)



 = 1 , (33)

g2

2
2

∫

d3q

(2π)3





1

q2(q2 + g2ν2) + g2
(

2β∗

3 + ω∗

3

)



 = 1 , (34)

allowing us to express β∗, ω∗ in terms of the parameters ν, g.

Equations (33) and (34) can be rewritten as

2

(

g2

2

)
∫

d3q

(2π)3

(

1

q4 + ω∗ 2g2

3

)

= 1 , (35)

2

(

g2

2

)
∫

d3q

(2π)3

(

1

q2(q2 + g2ν2) + (β∗ 2g2

3 + ω∗ g2

3 )

)

= 1 . (36)

The first integral is easy to compute, giving ω∗ as a function of g only

ω∗(g) =
3

211π4
g6 . (37)

In order to solve the second gap equation, eq.(36), we compute the roots of the denominator:

q2± =
−g2ν2 ±

√

g4ν4 − 4τ

2
. (38)

Notice that the roots are real when

τ ≤
g4ν4

4
(39)

with

τ = β∗ 2g
2

3
+ ω∗ g

2

3
. (40)

After decomposition in partial fractions, equation (36) becomes

4g2π

(2π)3(q2+ − q2−)

∫ ∞

0
dq

(

q2

(q2 − q2+)
−

q2

(q2 − q2−)

)

= 1 . (41)

Using the principal value prescription, this yields the final (finite) result

ig2

(4π)

1

q+ − q−
= 1 . (42)

Making use of expression (38), equation (42) gives τ as function of the parameters (ν, g), i.e.

τ = β∗ 2g
2

3
+ ω∗ g

2

3
=

[

1

2
g2ν2 −

g4

32π2

]2

. (43)

3We remind here that the terms log β and log ω can be neglected in the derivation of the gap equations, eqs.(33) (34),
when taking the thermodynamic limit, see [10, 11, 12] for details.
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2.2 Gluon propagators and phases of the theory

Having solved the gap equations, we can now look at the behavior of the gluon propagators and discuss
the phases of the theory. Let us start by looking at the propagator of the third component A3

µ, namely

〈

A3
µ(q)A

3
ν(−q)

〉

=
q2

q4 + 2ω∗g2

3

(

δµν −
qµqν
q2

)

, ω∗(g) =
3

211π4
g6 . (44)

One observes that expression (44) turns out to be independent from the vev ν of the Higgs field. It
is of the Gribov type, displaying two complex conjugate poles. In other words, the mode A3

µ is always
confined, for all values of the parameters g, ν. Concerning now the off-diagonal gluon propagator, it can
be decomposed into the sum of two Yukawa modes, i.e.

〈

Aα
µ(q)A

β
ν (−q)

〉

= δαβ
q2

q2 (q2 + g2ν2) + g2
(

2β∗

3 + ω∗

3

)

(

δµν −
qµqν
q2

)

= δαβ
(

R+

q2 +m2
+

−
R−

q2 +m2
−

)(

δµν −
qµqν
q2

)

, (45)

with

m2
+ =

g2ν2 +
√

g4ν4 − 4τ

2
, m2

− =
g2ν2 −

√

g4ν4 − 4τ

2
, (46)

and

R+ =
m2

+

m2
+ −m2

−

, R− =
m2

−

m2
+ −m2

−

. (47)

We see thus that, when τ < g2ν2

4 , both masses m2
+,m

2
− are real, positive and different, as well as the two

quantities R+,R−. Moreover, due to the presence of the relative minus sign in expression (45), only the
heaviest mode with mass m2

+ represents a physical excitation.

Therefore, taking into account eq.(43), we can identify the following regions in the (g2, ν2) plane:

i) when g2 < 32π2ν2, the off-diagonal propagator has a physical mode with real positive mass m2
+.

It is also worth observing that, for the particular value g = 16π2ν2, corresponding to τ = 0,
the unphysical mode in the decomposition (45) disappears, as R− = 0 = m2

−. Thus, for that par-
ticular value of the gauge coupling, the off-diagonal propagator reduces to a single physical Yukawa
mode with mass 16π2ν4, i.e.

〈

Aα
µ(q)A

β
ν (−q)

〉

= δαβ
(

1

q2 + 16π2ν4

)(

δµν −
qµqν
q2

)

, (48)

ii) when g2 > 32π2ν2, corresponding to τ > g2ν2

4 , all masses become complex and the off-diagonal
propagator becomes of the Gribov type with two complex conjugate poles. This region corresponds
to a phase in which all gauge modes are confined.

In summary, when the Higgs field is in the adjoint representation, we have two phases. For g2 < 32π2ν2

the A3 mode is confined while the off-diagonal propagator displays a physical Yukawa mode with mass
m2

+. This phase is referred to as the U(1) symmetric phase [5, 6]. When g2 > 32π2ν2 all propagators are
of the Gribov type, displaying complex conjugate poles. This means that all gauge modes are confined.
According to [5, 6], this phase is called the SU(2) confined phase. Since these results were obtained in a

8



semi-classical (= lowest order in the loop expansion) approximation, let us comment on the applicability
of such approximation. The latter is reasonable when the effective coupling constant is sufficiently small.

This effective coupling will for sure contain, in 3d, the combination G2 = g2

(4π)3/2
. This does not make

sense yet due to g2 having a mass dimension 1. In the presence of a mass scale M , the perturbative series
for e.g. the gap equation will organize itself automatically in a series in G2/M . Specifically, let us assume
that we are in the Higgs phase with thus g2 < 32π2ν2, the effective coupling will be sufficiently small
when G2

ν2
is small compared4 to 1. Such condition is not at odds with the retrieved condition g2 < 32π2ν2.

Next, assuming the coupling g2 to get large compared to ν2, thereby entering the confinement phase with
cc masses, g2 dominates everything, leading to a Gribov mass scale τ ∝ g8, and an appropriate power of
the latter will secure a small effective expansion parameter consistent with the condition g2 > 32π2ν2. We

thus find that at sufficiently small and large values of g2

ν2
our approximation and results are trustworthy.

3 The case of the fundamental representation

Let us face now a Higgs field in the fundamental representation of SU(2). In this case, the Lagrangian
of the model is given by

S =

∫

d3x

(

1

4
F a
µνF

a
µν + (Dij

µ Φ
j)†(Dik

µ Φk) +
λ

2

(

Φ†Φ− ν2
)2

+ ba∂µA
a
µ + c̄a∂µD

ab
µ cb

)

, (49)

where the covariant derivative is defined by

Dij
µ Φ

j = ∂µΦ
i − ig

(τa)ij

2
Aa

µΦ
j . (50)

The indices i, j = 1, 2 refer to the fundamental representation, and τa, a = 1, 2, 3, are the Pauli matrices.
In this case, for the vev of the Higgs field we have

〈Φ〉 =

(

0
ν

)

, (51)

so that all components of the gauge field acquire the same mass m2 = g2ν2

2 . In fact, for the quadratic
part of the action we have now

Squad =

∫

d3x

(

1

4

(

∂µA
a
ν − ∂νA

a
µ

)2
+ ba∂µA

a
µ +

g2ν2

4
Aa

µA
a
µ

)

. (52)

The implementation of the Gribov region can be done exactly as in the previous section, the only difference
being that in the present case only one Gribov parameter is needed, due to the fact that all components
of the gauge field have the same mass. This immediately leads to the following gluon propagator

〈

Aa
µ(q)A

b
ν(−q)

〉

= δab
q2

q4 + g2ν2

2 q2 + 4g2

9 ϑ

(

δµν −
qµqν
q2

)

, (53)

where ϑ is the Gribov parameter, determined by the following gap equation

4

3
g2
∫

d3q

(2π)3
1

q4 + g2ν2

2 q2 + 4g2

9 ϑ
= 1 , (54)

4The Higgs mass ν2 is then the only mass scale entering the game.
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which gives

4g2

9
ϑ =

1

4

(

g2ν2

2
−

g4

9π2

)2

. (55)

We can now proceed to analyze the gluon propagator (53). As done in the previous section, we decompose
it in the following way

〈

Aa
µ(q)A

b
ν(−q)

〉

= δab
(

F+

q2 +m2
+

−
F−

q2 +m2
−

)(

δµν −
qµqν
q2

)

, (56)

with

m2
+ =

1

2

(

g2ν2

2
+

√

g6

9π2

(

ν2 −
g2

9π2

)

)

, m2
− =

1

2

(

g2ν2

2
−

√

g6

9π2

(

ν2 −
g2

9π2

)

)

, (57)

and

F+ =
m2

+

m2
+ −m2

−

, F− =
m2

−

m2
+ −m2

−

. (58)

Similarly to the previous case, we can distinguish two regions in the (ν2, g2) plane:

i) when g2 < 9π2ν2 both masses (m2
+,m

2
−) are positive, as well as the residues (F+,F−). The gluon

propagator, eq.(56), decomposes into two Yukawa modes. However, due to the relative minus sign
in expression (56) only the heaviest mode with mass m2

+ represents a physical mode. We see thus
that, for g2 < 9π2ν2, all components of the gauge field exhibit a physical massive mode with mass
m2

+. This region is what can be called a Higgs phase.

Also, let us notice that, for the particular value g2 = 9π2

2 ν2, corresponding to a vanishing Gribov
parameter ϑ = 0, the unphysical Yukawa mode in expression (56) disappears, as m2

− = F− = 0. As
a consequence, the gluon propagator reduces to that of a single physical mode, namely

〈

Aa
µ(q)A

b
ν(−q)

〉

= δab
(

δµν −
qµqν
q2

)

1

q2 + 9π2

4 ν4
. (59)

ii) when g2 > 9π2ν2, the masses (m2
+,m

2
−) become complex. In this region, the gluon propagator,

eq.(56), becomes of the Gribov type, displaying complex conjugate poles. All components of the
gauge field become thus unphysical. This region corresponds to the confining phase.

Summarizing, when the Higgs field is in the fundamental representation, a Higgs phase is detected for
g2 < 9π2ν2. When g2 > 9π2ν2, the confining phase emerges. Concerning the trustworthiness of the
results, completely analogous comments as in the adjoint case apply here as well.

4 Conclusion

In this work the dynamics of 3d Yang-Mills theories in presence of Higgs fields has been investigated
from the point of view of the Gribov issue, i.e. by taking into account the existence of the Gribov copies.
As a consequence of the restriction of the domain of integration in the functional integral to the Gribov
region Ω, the propagator of the gluon field gets deeply modified by the presence of the non-perturbative
Gribov parameters as well as of the vev of the Higgs field. Looking thus at the structure of the poles of
the propagator, we are able to distinguish different regions in the (g2, ν2) plane for the physical spectrum
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of the theory. Both adjoint and fundamental representation for the Higgs field have been considered,
leading to a quite different spectrum.

In the case of the adjoint representation, it turns out that the A3
µ mode of the gauge field is always

confined. Its propagator is of the Gribov type, exhibiting two unphysical complex conjugate masses. For
the off-diagonal components, we can have a different behavior, according to the size of the coupling con-
stant g. When g2 < 32π2ν2, the off-diagonal components display a physical Yukawa mode, while when
g2 > 32π2ν2 they become confined. According to [5], these regions have been called the U(1) symmetryic
region and the SU(2) confined region, respectively.

The situation turns out to be different in the case of the fundamental representation. Here, for g2 < 9π2ν2,
all components of the gauge field display a physical Yukawa mode with mass m2

+, eq.(57). This is what
can be called the Higgs phase. Moreover, when g2 > 9π2ν2, the gluon propagator becomes of the Gribov
type with complex conjugate masses. This is the confining phase.

It is worth to point out that the poles of the gluon propagator are continuous functions of the pa-
rameters (g2, ν2). In this sense, the two regions, i.e. the Higgs and the confining phases, can be seen
as being smoothly connected. Let us also underline that, in the present investigation, the quartic self-
coupling of the Higgs field λ has been implicitly taken to be very large, so that the modulus of the Higgs
field gets frozen to its classical vev. It is remarkable that our results are in good agreement with both
theoretical results [1] as well as with the data of lattice numerical simulations [5, 6] at sufficiently large
values of the Higgs quartic self-coupling λ. To some extent, this can be regarded as an important test
of the nonperturbative study of Yang-Mills theories from the point of view of the Gribov issue, i.e. by
taking into account the presence of the Gribov horizon.

Evidently, some questions remain. Beyond the here adopted semi-classical approximation, we would
need to investigate more closely the role of the wrong-signed Yukawa mode in the Higgs phase. Perhaps
the clue will be that its residue is in absolute value always smaller than that of the physical mode. In
particular, there is a particular value of the coupling where the “ghost Yukawa” vanishes.

In summary, the present work aims at giving a contribution to the complex and physically relevant
issue of the transition between the Higgs and the confining phases. The results which we have obtained
so far are in agreement with previous findings and can be regarded as a promising step towards the study
of more realistic theories such as a 4d gauge theory with gauge group SU(2) × U(1)[18].
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