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The quantization of non-Abelian gauge theories is known to be plagued by Gribov copies. Typical
examples are the copies related to zero modes of the Faddeev–Popov operator, which give rise to
singularities in the ghost propagator. In this work we present an exact and compact expression for
the ghost propagator as a function of external gauge fields, in SU(N) Yang–Mills theory in the Landau
gauge. It is shown, to all orders, that the condition for the ghost propagator not to have a pole, the
so-called Gribov’s no-pole condition, can be implemented by demanding a non-vanishing expectation
value for a functional of the gauge fields that turns out to be Zwanziger’s horizon function. The action
allowing to implement this condition is the Gribov–Zwanziger action. This establishes in a precise way
the equivalence between Gribov’s no-pole condition and Zwanziger’s horizon condition.
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1. Introduction

It is well known that the gauge fixing quantization procedure
of Yang–Mills gauge theories suffers from ambiguities related to
the existence of the so-called Gribov copies [1]. For example, zero
modes of the Faddeev–Popov operator, which are Gribov copies.
These zero modes give rise to singularities in the ghost propaga-
tor as the latter is nothing else than the inverse Faddeev–Popov
operator. Gribov was the first to point out this problem and to
propose a possible resolution [1]. In the Landau gauge it consists
of restricting the domain of integration in the Euclidean functional
integral to the Gribov region Ω , defined as the region in field
space where the Faddeev–Popov operator is strictly positive. The
region Ω is known to be convex and bounded in all directions in
field space. Moreover, every gauge orbit crosses Ω at least once.2

The boundary ∂Ω of the region Ω , where the first vanishing eigen-
value of the Faddeev–Popov operator appears, is called the Gribov
horizon. Following [1], the implementation of the restriction to Ω

amounts to impose that the ghost propagator, i.e. the inverse of
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the Faddeev–Popov operator, has no-poles at finite non-vanishing
values of the momentum k. This implies that, within the region Ω ,
the ghost propagator remains always positive, namely the Gribov
horizon ∂Ω is never crossed. The only allowed pole is at k2 = 0,
which has the meaning of approaching the horizon ∂Ω . The re-
quirement of absence of poles for the ghost propagator is known
as the no-pole condition.

In his seminal work [1], Gribov worked out the no-pole con-
dition at the first nontrivial order and evaluated the ensuing
modifications of the gauge and ghost propagators. Subsequently,
Zwanziger [4–6] provided an independent framework for the re-
striction to the Gribov region. More precisely, by making use of
degenerate quantum mechanics perturbation theory, he has been
able to provide a characterization of the eigenvalues λn(A) of
the Faddeev–Popov operator, Mab = −(∂2δab − g f abc Ac

μ∂μ), tak-

ing the Laplacian, −∂2δab , as starting point and then performing
a resummation of the whole perturbative series. In that way he
ended up with a closed expression for the trace of the Faddeev–
Popov operator, TrM, which resulted in a nonlocal functional of
the gauge field, called the horizon function [4–6]. Moreover, re-
lying on the equivalence between the micro-canonical and the
canonical ensembles, he constructed a local and renormalizable ac-
tion implementing the restriction to the region Ω . The ordinary
Faddeev–Popov action gets modified by the addition of the horizon
function which can be cast in local form by introducing a suitable
set of auxiliary fields. The resulting action is known as the Gribov–
Zwanziger action.
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It is worth underlining that Gribov’s no-pole condition and
Zwanziger’s construction yield exactly the same results at the low-
est nontrivial order. For example, the first order gap equation
stemming from Gribov’s no-pole condition is precisely the same as
that obtained through Zwanziger’s horizon condition. Also, an ex-
plicit two loop computation confirms this [7]. Moreover, the lowest
order nonlocal modification of the Faddeev–Popov action obtained
by Gribov coincides with what one obtains within Zwanziger’s con-
struction. This has naturally led to conjecture that both approaches
should be equivalent. Though, so far, an all-order proof of this
statement is still lacking. The aim of the present Letter is to fill
this gap.

To some extent, the possible equivalence between the two ap-
proaches could also be expected by noticing that the ghost propa-
gator G(x, y; A) in an external gauge field A can be expressed as

G(x, y; A) =
∑

n

un(x; A)u∗
n(y; A)

λn(A)
, (1)

where un(x; A) stands for the eigenfunction corresponding to the
eigenvalue λn(A) of the Faddeev–Popov operator. Ones realizes
thus that positivity of G(x, y; A) is strictly related to that of the
eigenvalues λn(A).

The connection between Zwanziger’s construction of the
Gribov–Zwanziger action and the original no-pole condition pro-
posed by Gribov was first discussed in a previous work [8] by
some of the authors of the present work. In [8], it was shown that
Zwanziger’s horizon function can be matched to the ghost form
factor, defined through the no-pole condition, up to the third or-
der in the external gauge field. In this work we generalize this
result and present a more precise statement of the aforemen-
tioned equivalence. We evaluate Gribov’s ghost form factor as
an infinite series in the external gauge fields, providing the ex-
pression of the generic n-th term of the expansion. Further, we
show that, at zero external momentum, the whole series can
be resummed, the resulting expression coinciding precisely with
Zwanziger’s horizon function. It follows thus that the no-pole con-
dition can be expressed as a condition on the 1PI expectation value
of the ghost form factor. However, this condition cannot be realized
within the Faddeev–Popov functional measure, as also pointed out
in [9]. Instead, it can be consistently implemented by employing
the Gribov–Zwanziger action, and thus corresponds to Zwanziger’s
horizon condition. This result confirms and proves in a precise way
the conjecture that the Gribov–Zwanziger action corresponds to
the restriction to the Gribov region in the way originally intended
by Gribov.

This Letter is organized as follows: in Section 2 brief reviews
of the original Gribov no-pole condition and of the construction of
Zwanziger’s horizon function are given. In Section 3 we construct
the exact expression of Gribov’s ghost form factor as a function
of the external momentum and gauge fields and show that it co-
incides with Zwanziger’s horizon function. Section 4 contains our
conclusions.

2. Gribov’s no-pole condition and Zwanziger’s horizon function

In this section we give a brief review of the two original
proposals for dealing with the Gribov problem, namely Gribov’s
no-pole condition and Zwanziger’s construction of the Gribov–
Zwanziger action.

2.1. Gribov’s no-pole condition

Gribov [1] pointed out that even after imposing the Landau
gauge condition, ∂μ Aa

μ = 0, there still remain redundant gauge
copies.3 In the path integral quantization procedure, these Gribov
copies lead to a breakdown of the Faddeev–Popov prescription re-
sulting in an ill-defined functional measure. In a very schematic
exposition, the Faddeev–Popov procedure relies on expressing a
unity as “δ-function × Jacobian” where the δ-function imposes the
gauge fixing. The combination with the Jacobian determinant can
then be lifted into the action using the Faddeev–Popov “trick”
(= introduction of ghosts), leaving us with a new gauge fixed par-
tition function. However, the assertion “1 = δ-function × Jacobian”
needs to be replaced by “1 = ∑

δ-function × Jacobian” if the gauge
fixing condition has multiple solutions. Unfortunately, that sum
cannot be lifted into the partition function and the Faddeev–Popov
procedure thus fails.

Examples of Gribov copies can be easily constructed by looking
at zero modes of the Faddeev–Popov operator. Indeed, if Aμ and
A′

μ are connected by an infinitesimal gauge transformation

A′a
μ = Aa

μ − Dab
μ ωb, where Dab

μ = ∂μδab − g f abc Ac
μ (2)

and both satisfy the Landau gauge condition ∂μ Aa
μ = ∂μ A′a

μ = 0, it
follows that ωa is a zero mode of the Faddeev–Popov operator, i.e.

−∂μDab
μ ωb = Mabωb = 0. (3)

In [1] some examples of nontrivial solutions of this equation were
first provided. In fact, it can be shown that there are an infi-
nite number of zero modes [11,12]. It is therefore clear that the
Faddeev–Popov quantization does not provide a well-defined mea-
sure of integration over non-Abelian gauge fields.

As already mentioned above, this problem is faced by restrict-
ing the domain of integration in the path integral to the region Ω ,
defined as the set of field configurations obeying the Landau con-
dition and for which the Faddeev–Popov operator Mab is strictly
positive, namely

Ω = {
Aa

μ; ∂μ Aa
μ = 0; Mab = −(

∂2δab − g f abc Ac
μ∂μ

)
> 0

}
. (4)

In practice, to restrict the domain of integration to the region Ω ,
Gribov studied the ghost propagator, which is the inverse of the
operator Mab . He started by writing a general expression for the
normalized trace of the ghost propagator as a function of the gauge
field configuration A and the external ghost momentum k

G(k, A) = 1

(N2 − 1)
δab(M−1)ab = 1

k2

(
1 + σ(k, A)

)
, (5)

where we have defined the ghost form factor σ(k, A) in the pres-
ence of an external gauge background, see also (31). Being inter-
ested in the modifications of the gluon propagator in the deep
infrared regime, he focused on the contribution to the ghost form
factor σ(k, A) coming from quadratic terms in the external gauge
fields Aa

μ . Up to this order, for σ(k, A) one gets

σ(k, A) = g2N

N2 − 1

1

k2

∫
d4q

(2π)4

(k − q)μkν

(k − q)2
Aa(−q)μ Aa

ν(q)

+ O
(

A3), (6)

and expression (5) can be written as

G(k, A) ≈ 1

k2

1

1 − σ(k, A)
. (7)

3 It is worth to point out that the existence of the Gribov copies is not limited to
the Landau gauge. It is a feature of the gauge fixing procedure [10], given certain
assumptions of Lorentz covariance etc.
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As σ(k, A) turns out to be a decreasing function of the momen-
tum k [1], Gribov required the validity of the condition

σ(0, A) � 1, (8)

which is known as the no-pole condition. From condition (8) it fol-
lows that the ghost propagator has no poles at finite non-vanishing
values of the momentum k. Therefore, expression (7) stays always
positive, meaning that the Gribov horizon ∂Ω is never crossed.

In order to proceed further with the construction of a well-
defined measure for the gauge path integral, the condition (8) has
to be incorporated into the dynamics of the theory. To that pur-
pose, Gribov [1] modified the Faddeev–Popov measure by including
condition (8) through a unit step function θ(x), i.e.

dμFP = DAδ(∂ A)det
(
Mab)e−SYM

⇒ DAδ(∂ A)det
(
Mab)θ(

1 − σ(0, A)
)
e−SYM , (9)

where SYM is the classical Euclidean Yang–Mills action

SYM = 1

4

∫
dD x F a

μν F a
μν. (10)

Making use of the integral representation

θ(x) =
+i∞+ε∫

−i∞+ε

dβ

2π iβ
e−βx, (11)

it turns out that the Yang–Mills action gets modified by the addi-
tion of the factor σ(0, A)

e−SYM ⇒ e−(SYM+βσ (0,A)). (12)

Therefore, for the partition function Z , one writes

Z =
∫

DA
dβ

2π iβ
δ(∂ A)det

(
Mab)e−SYM eβ(1−σ (0,A)). (13)

Following e.g. [1,2], the integration over β can be done in a saddle
point approximation in the thermodynamic limit, yielding

Z = N
∫

DAδ(∂ A)det
(
Mab)e−(SYM+β∗σ (0,A)−β∗), (14)

with β∗ determined by the gap equation [1]

1 = 3Ng2

4

∫
dDk

(2π)D

1

k4 + g2 N
2(N2−1)

β∗
. (15)

A technical argumentation can be found in [2]. Let us point out
that this procedure is based on the approximate form of Eqs. (6),
(7), which is only valid up to second order in the external gauge
fields. In Section 3 we shall work out the exact expression of
σ(k, A). In this case, the implementation of the no-pole condition
demands us to consider the gauge field dynamics (the interaction
structure) from the beginning. We will show that the no-pole con-
dition turns out to be a statement about the 1PI diagrams of the
ghost form factor.

2.2. Zwanziger’s horizon condition

An independent implementation of the restriction to the re-
gion Ω has been worked out by Zwanziger [4–6], through the
analysis of the eigenvalues λ(A) of the Faddeev–Popov operator

Mabωb = λ(A)ωa. (16)

The Gribov horizon ∂Ω can be probed by studying the behavior of
the smallest eigenvalue λmin(A) as a function of the gauge fields
configuration. In terms of λmin(A), the restriction to the region Ω

is achieved by demanding that

λmin(A) � 0, (17)

which implies that the Faddeev–Popov operator is always positive.
Zwanziger was able to find an expression for the trace of the op-
erator M:

TrM = V D
(
N2 − 1

) − H(A), (18)

where D and V stand for the dimensions and the volume of the
Euclidean space–time, respectively, and the horizon function H(A)

is given by

H(A) = g2
∫

d4x d4 y f abc Ab
μ(x)

[
M−1]ad

(x, y) f dec Ae
μ(y). (19)

The expression (19) is known as the horizon function. In [5] (cf.
also a more recent discussion in [2]), it has been argued that, in
the infinite volume limit, the condition (17) is very well approxi-
mated by the demand that TrM is positive, (18), namely

V D
(
N2 − 1

) − H(A) � 0. (20)

Relying on the equivalence between the canonical and micro-
canonical ensembles in the thermodynamic limit, Zwanziger has
been able to implement the constraint in the functional inte-
gral [4–6]. This has resulted in the following partition function

Z =
∫

DAδ(∂ A)det
(
Mab)e−(SYM+γ 4 H(A)−γ 4 V D(N2−1)), (21)

where the massive parameter γ is a dynamical parameter deter-
mined in a self-consistent way through the horizon condition [4–6]〈
H(A)

〉
GZ = V D

(
N2 − 1

)
, (22)

where we made explicit the fact that the expectation value
〈H(A)〉GZ has to be evaluated with the modified action

SGZ = SFP + γ 4 H(A) − γ 4 V D
(
N2 − 1

)
, (23)

where SFP stands for the Yang–Mills action SYM supplemented
with the gauge fixing factors coming from the Faddeev–Popov
measure, given in (21). The action SGZ , (23), is known as the
Gribov–Zwanziger action. Eqs. (21), (22) implement the restric-
tion to the Gribov region Ω within Zwanziger’s framework. In
particular, the horizon condition (22) enables us to express the pa-
rameter γ as a function of the gauge coupling. At lowest order,
condition (22) reads

1 = 3Ng2

4

∫
dDk

(2π)D

1

k4 + 2g2Nγ 4
, (24)

from which one sees that, apart from a numerical coefficient, the
parameter γ 4 can be identified with β∗ , more precisely β∗ =
4(N2 − 1)γ 4 in Gribov’s approach.

From this brief review, it should be apparent that, even though
Gribov and Zwanziger follow completely different paths to con-
strain the gauge measure to the horizon Ω , at the leading order
explicitly analyzed by Gribov, their prescriptions for the gauge
quantization coincide.4 This fact strongly suggests that it should
be possible to establish a more precise relation between these ap-
proaches. This is exactly the purpose of the next section.

4 This equivalence was also established up to the third order in the external gauge
fields [8].



M.A.L. Capri et al. / Physics Letters B 719 (2013) 448–453 451
3. The exact ghost form factor and the horizon function

In this section we show by an explicit computation that the
exact, all-order, ghost form factor is proportional to the horizon
function. This will lead to a precise connection between Gribov’s
no-pole condition and Zwanziger’s horizon condition discussed in
the previous sections.

We start by providing an explicit derivation of the ghost two-
point correlator as a function of the external gauge fields and ex-
ternal momenta. Such quantity is defined by the Fourier transform
of the expression

〈
c̄a(x)cb(y)

〉 =
∫
DcDc̄c̄a(x)cb(y)e

∫
c̄cMcdcd∫

DcDc̄e
∫

c̄cMcdcd
(25)

where
∫

c̄aMabcb stands for∫
c̄aMabcb =

∫
dD x c̄a(x)

(−δab∂2 − g Aab
μ (x)∂μ

)
cb(x)

=
∫

dD p

(2π)D

∫
dDq

(2π)D
c̄a(−p)

(
q2δabδ(p − q)

− g Aab
μ (p − q)iqμ

)
cb(q)

=
∫

dD p

(2π)D

∫
dDq

(2π)D
c̄a(−p)Mab(p − q)cb(q) (26)

with Aab ≡ f acb Ac . We did not use different symbols for the
Fourier transform in expression (26). It is worth noticing that, so
far, expression (25) does not require the specification of an action
describing the dynamics of the gauge fields. This is an important
point since we will eventually impose a condition on the ghost
two-point function whose fulfillment will require the employment
of a specific action.

The expression (25) can be explicitly evaluated to all orders by
standard techniques, using the Wick theorem, yielding〈
c̄a(x)cb(y)

〉 = δabG0(x − y)

+ g

∫
dD x1 G0(x − x1)Aab

μ1
(x1)∂

x1
μ1

G0(x1 − y)

+ g2
∫

dD x1

∫
dD x2 G0(x − x1)Aac

μ1
(x1)∂

x1
μ1

× G0(x1 − x2)Acb
μ2

(x2)∂
x2
μ2

G0(x2 − y)

+ · · · (27)

where the expression of order n in g has the form

gn
∫

dD x1

∫
dD x2 . . .

∫
dD xn

[
G0(x − x1)Aaa1

μ1
(x1)∂

x1
μ1

× G0(x1 − x2)Aa1a2
μ2

(x2)∂
x2
μ2

G0(x2 − y) · · ·
× A

an−1b
μn (xn)∂

xn
μn

G0(xn − y)
]

(28)

whereby G0(x − y) stands for the free ghost propagator

G0(x − y) =
∫

dD p

(2π)D

1

p2
eip(x−y). (29)

It is useful to rewrite Eq. (27) in Fourier space

〈
c̄a(p)cb(−q)

〉 = ∫
dD x

∫
dD y

〈
c̄a(x)cb(y)

〉
e−ipxeiqy

= 1
2

[
δabδ(p − q) + g Aab

μ (p − q)
iqμ

2
p q
+ g2
∫

dDr

(2π)D
Aac

μ (p − r)
irμ
r2

Acb
ν (r − q)

iqν

q2

+ · · · + gn
∫

dDq1

(2π)D
. . .

∫
dDqn−1

(2π)D
Aaa1

μ1
(p − q1)

× iq1μ1

q2
1

Aa1a2
μ2

(q1 − q2)
iq2μ2

q2
2

· · ·

× A
an−1b
μn (qn−1 − q)

iqμn

q2
+ · · ·

]
. (30)

Following Gribov [1], we look at the full normalized trace of ex-
pression (30), that is

G(k, A) = 1

V (N2 − 1)

〈
c̄a(p)ca(−q)

〉∣∣
p=q=k

= 1

k2

(
1 + σ(k, A)

)
(31)

where V = δ(p − q)|p=q . It then follows from Eq. (30) that the
exact ghost form factor is given by

σ(k, A) = 1

V (N2 − 1)

[
g2

∫
dDr

(2π)D
Aac

μ (k − r)
irμ
r2

Aca
ν (r − k)

ikν

k2

+ · · · + gn
∫

dDq1

(2π)D
. . .

∫
dDqn−1

(2π)D
Aaa1

μ1
(k − q1)

iq1μ1

q2
1

× Aa1a2
μ2

(q1 − q2)
iq2μ2

q2
2

· · · A
an−1a
μn (qn−1 − k)

ikμn

k2

+ · · ·
]
. (32)

Let us now show that, in the limit of vanishing external momen-
tum k → 0, the ghost form factor σ(k → 0, A) is proportional to
Zwanziger’s horizon function. Focusing on the general term of or-
der n in g , we perform the change of variables qi → k + qi , for
i = 1, . . . ,n − 1, obtaining

gn
∫

dDq1

(2π)D
. . .

∫
dDqn−1

(2π)D
Aaa1

μ1
(−q1)

ikμ1

(k + q1)2

× Aa1a2
μ2

(q1 − q2)
i(k + q2)μ2

(k + q2)2
· · · A

an−1a
μn (qn−1)

ikμn

k2

= −kμ1kμn

k2
f (n)
μ1μn (33)

where the transversality of Aab
μ in the Landau gauge was used. The

tensor fμ1μn depends on the momentum k and on the gauge field
polarizations. Therefore, we conclude that5

lim
k→0

−kμ1kμn

k2
f (n)
μ1μn

= − gn

D

∫
dDq1

(2π)D
. . .

∫
dDqn−1

(2π)D
Aaa1

μ (−q1)
1

q2
1

× Aa1a2
μ2

(q1 − q2)
iq2μ2

q2
2

· · · A
an−1a
μ (qn−1). (35)

5 We notice that, being a function of the momentum kμ and of the external gauge
field Aa

μ , the tensor fμν can be expressed in the following general form

fμν = α1(k; A)δμν + αab
2 (k; A)Aa

μ Ab
ν + αa

3(k; A)kμ Aa
ν

+ αa
4(k; A)kν Aa

μ + α5(k; A)kμkν , (34)

where αi , i = 1, . . . ,5 are scalar quantities. Thus, Eq. (35) follows due to the
transversality of the gauge field, kμ Aa

μ = 0.
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In order to obtain a closed expression for σ(0, A), it is useful
to introduce a matrix notation. Defining

A
ab
pq = Aab

μ (p − q)
iqμ

q2
(36)

with matrix multiplication defined by

(
A

2)ab
pq =

∫
dDr

(2π)D
Aac

μ (p − r)
irμ
r2

Acb
ν (r − q)

iqν

q2
(37)

we can write the general term of order n in g as

− gn

D

∫
dDq1

(2π)D

∫
dDqn−1

(2π)D
Aaa1

μ (−q1)

× 1

q2
1

(
A

n−2)a1an−1

q1qn−1
A

an−1a
μ (qn−1). (38)

Thus

σ(0, A) = − g2

V D(N2 − 1)

∫
dD p

(2π)D

∫
dDq

(2π)D
Aab

μ (−p)

× 1

p2

( ∞∑
n=0

(gA)n

)bc

pq

Aca
μ (q). (39)

Now, in matrix notation, we also have

Mab(p − q) = q2δabδ(p − q) − g Aab
μ (p − q)iqμ

= q2(1 − gA)ab
pq (40)

where 1 = δabδ(p − q). Then, the ghost propagator can be written
as

M−1 = 1

p2
[1 − gA]−1 = 1

p2

∞∑
n=0

(gA)n, (41)

from which we finally obtain the exact expression for the ghost
form factor

σ(0, A) = − g2

V D(N2 − 1)

∫
dD p

(2π)D

∫
dDq

(2π)D

× Aab
μ (−p)

(
M−1)bc

pq Aca
μ (q)

= H(A)

D V (N2 − 1)
. (42)

Finally, as anticipated above, one sees that the exact expression
for the ghost form factor at zero momentum is directly propor-
tional to the horizon function. This will provide us with the precise
connection between the original Gribov no-pole condition and the
Zwanziger construction of the Gribov–Zwanziger action.

In order to establish this connection we first note that, beyond
first order, i.e. the quadratic approximation, we cannot straightfor-
wardly express Eq. (31) as in Eq. (7), with the gauge field as an
external field. The same is in general true also for the expectation
values, which reflects the fact that the gauge field dynamics must
be considered from the beginning. As is well established from gen-
eral properties of quantum field theory, the precise statement has
to be done in terms of 1PI diagrams, namely

G(k) = 〈
G(k, A)

〉conn = 1

k2

(
1 + 〈

σ(k, A)
〉conn)

= 1
2

1
1PI

(43)

k (1 − 〈σ(k, A)〉 )
where “conn” stands for the connected set of diagrams and 1PI
denotes the one-particle irreducible ones.6 From this expression,
the no-pole condition for the ghost form factor reads〈
σ(0, A)

〉1PI � 1. (44)

From Eq. (42), we can see that this condition is equivalent to

V D
(
N2 − 1

) − 〈
H(A)

〉1PI � 0, (45)

which represents a no-pole condition valid to all orders in the
gauge coupling.

Notice that we have not yet specified the dynamics of the gauge
field, that is, we have not yet defined an action for the gauge fields
with which the expectation value in Eq. (45) is to be computed.
Actually, our task of defining a gauge path integral that obeys
Gribov’s no-pole condition at all orders becomes exactly that of
finding a gauge action which is capable of implementing the in-
equality in Eq. (45).

From the previous section, we know that the Gribov–Zwanziger
action provides a framework compatible with the horizon condi-
tion, which in the infinite volume limit takes the form〈
H(A)

〉1PI
GZ = V D

(
N2 − 1

)
. (46)

This result also reveals the interesting fact that the horizon condi-
tion in Gribov–Zwanziger formulation is made up only by diagrams
which are 1PI. Observe that the horizon condition, Eq. (22), can be
written as a stationary condition for the vacuum energy:

∂E
∂γ 2

= 0 (47)

where the vacuum energy E is defined from

e−E =
∫

DAδ(∂ A)det
(
Mab)e−(SYM+γ 4 H(A)−γ 4 V D(N2−1)). (48)

Eq. (47) is easily seen to give 〈H(A)〉conn
GZ = V D(N2 − 1). Never-

theless, in the Landau gauge, it follows that the only diagrams
contributing to the vacuum energy are7 1PI. As a consequence,
〈H(A)〉conn

GZ = 〈H(A)〉1PI
GZ . It then follows that the gap equation is

indeed given by Eq. (46).
We also point out that the infrared limit of the ghost form fac-

tor is subtle: the GZ connected average and the k → 0 limit are not
trivially interchangeable. At lowest order in the external momen-
tum k, one has〈
σ(k, A)

〉1PI
k≈0 ≈ 〈

σ(0, A)
〉1PI − ck2 (49)

where c is a numerical constant and we have omitted the GZ
subscript of the averages for notational simplicity. This leads con-
sistently to the well-known enhanced behavior of the ghost prop-
agator in the deep infrared limit, k → 0, in the Gribov–Zwanziger
framework

G(k)k≈0 ≈ 1

k4
. (50)

6 Notice that in Eq. (43), the gauge field A is no more an external field since, al-
though not yet specified, the expectation value 〈σ(k, A)〉 is meant to be evaluated
with an appropriate functional measure allowing to impose the horizon condi-
tion (46).

7 The 1PI nature of the horizon condition is directly connected to the fact that
it is a condition on a vacuum energy. Diagrammatically, the quantity E is com-
posed of bubble contributions, without external legs and, consequently, with no
external momentum flow. It is straightforward to see then that any one-particle
reducible diagram contributing to E is actually proportional to the square of the
zero-momentum expectation value of the fundamental field propagating in the re-
ducible line, i.e. to the condensate of this fundamental field. Due to Lorentz and/or
global color invariance, these condensates are forbidden and therefore all 1PR con-
tributions to the vacuum energy vanish.



M.A.L. Capri et al. / Physics Letters B 719 (2013) 448–453 453
It is worthwhile underlining that an alternative argument behind
the 1PI nature of the horizon condition and the ensuing infrared
enhancement of the ghost was presented in [6].

It should be, however, remembered here that, according to the
most recent lattice data [13–22], the ghost propagator is not en-
hanced in the infrared, having instead the following asymptotic
behavior

G(k)k≈0 ≈ 1

k2
(51)

while the gluon propagator turns out to be suppressed in the in-
frared, violating positivity and attaining a non-vanishing value at
k = 0. In [23–25], a theoretical framework was presented in order
to accommodate these results within the Gribov–Zwanziger frame-
work.8 This has led to what is now called the Refined Gribov–
Zwanziger (RGZ) action, whose construction relies on the obser-
vation that, besides the parameter γ 2, additional nonperturbative
effects related to dimension two condensates have to be taken
into account in the infrared. Remarkably, these condensates can
be taken into account by maintaining the renormalizability of the
theory, resulting in the so-called RGZ action. In view of our previ-
ous discussion, it is natural to ask how the RGZ action fits in our
general considerations? To that end, we recall that tree level part
of the RGZ action can be written as

SRGZ = SGZ + 1

2
m2

∫
dD x Aa

μ Aa
μ − M2

∫
dD x

(
φ̄a

i φ
a
i − ω̄a

i ω
a
i

)
+ rest, (52)

where φ̄a
i , φa

i , ω̄a
i , ωa

i are the usual auxiliary fields introduced in
order to localize the horizon function. m2 and M2 are the vac-
uum expectation values of d = 2 scalar fields that condense and
whose vev are in a 1–1 correspondence with the composite op-
erators A2 and φ̄φ − ω̄ω [25]. With this action, it can be easily
inferred that the Faddeev–Popov operator appearing in the horizon
function will be dynamically transformed into −∂ D + M2, i.e. we
loose the direct connection with the inverse ghost form factor,
viz. the quantity σ(0). In addition, the vacuum energy in the RGZ
setting of [25] is also no more of a pure 1PI nature due to the pres-
ence of condensing scalar fields (∼ dimension two operators). So,
even though the expression (42) remains valid, we now have that
〈σ(0, A)〉1PI

RGZ �= 1, implying that, within the RGZ framework [24],
the ghost is no more enhanced, being in agreement with the lat-
tice results, in Eq. (51).

4. Conclusion

By expressing the ghost propagator exactly to all orders in the
external gauge fields, we have precisely established the long sus-
pected equivalence between Gribov’s no-pole condition and the GZ
scenario. This relies on the crucial technical result that the ex-
act ghost form factor σ(k, A) becomes proportional to Zwanziger’s
horizon function in the infrared limit, k → 0, which guarantees
that Gribov’s condition of absence of poles in the ghost propaga-
tor ultimately translates into a condition for Zwanziger’s horizon
function.

8 A short selection of other approaches is, for example, [26–34].
In a work in progress partially based on the analysis in this
Letter, a renormalizable continuum version of the so-called Landau
B-gauges [35,22] will be studied, wherein the ghost form factor at
zero momentum is introduced as a boundary condition. In our lan-
guage, this amounts to set σ(0) = B with B � 1 a kind of “gauge
choice”. A thorough analysis of the implementation and ramifica-
tions of this will be presented elsewhere.
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