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Abstract The renormalization of N = 1 Super Yang–
Mills theory is analyzed in the Wess–Zumino gauge, employ-
ing the Landau condition. An all-orders proof of the renor-
malizability of the theory is given by means of the Algebraic
Renormalization procedure. Only three renormalization con-
stants are needed, which can be identified with the coupling
constant, gauge field, and gluino renormalization. The non-
renormalization theorem of the gluon–ghost–antighost ver-
tex in the Landau gauge is shown to remain valid in N = 1
Super Yang–Mills. Moreover, due to the non-linear realiza-
tion of the supersymmetry in the Wess–Zumino gauge, the
renormalization factor of the gauge field turns out to be dif-
ferent from that of the gluino. These features are explicitly
checked through a three-loop calculation.

1 Introduction

Supersymmetric N = 1 gauge theories exhibit remarkable
features, both at perturbative and non-perturbative level; see,
for instance, [1] and references therein.

For what concerns the ultraviolet behavior, the symmetry
between bosons and fermions gives rise to milder divergences
in the ultraviolet regime, a property which is at the origin of
a set of non-renormalization theorems; see [2].
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In this work we discuss some features of the renormal-
ization of N = 1 Super Yang–Mills theories in Euclidean
space-time in the Wess–Zumino gauge, in which the num-
ber of field components is minimum. Employing the alge-
braic renormalization method [3], we are able to show, to all
orders of perturbation theory, that, in the Landau gauge, only
three independent renormalization factors, (Zg, Z A, Zλ), are
needed to renormalize the theory, which can be identified
with the coupling constant, gauge field and gluino renor-
malization. The renormalization factors of all other fields,
i.e. the Lagrange multiplier implementing the Landau gauge
condition, the Faddeev–Popov ghosts, the external BRST
sources, the global SUSY ghosts, etc., can be expressed as
suitable combinations of (Zg, Z A, Zλ). In particular, the non-
renormalization theorem of the gluon–ghost–antighost ver-

tex in the Landau gauge, i.e. Zg Z1/2
A Z1/2

c Z1/2
c̄ = 1, still holds

in N = 1 Super Yang–Mills theories, due to the existence
of the so-called ghost Ward identity; see (22). Moreover, due
to the non-linear realization of supersymmetry in the Wess–
Zumino gauge, it turns out that the renormalization factor Z A

of the gauge field is different from the renormalization factor
Zλ of the gluino, a property which we shall check through
a three-loop calculation and which was already observed at
one-loop level in the Feynman gauge [4]. To some extent, the
present work can be seen as a continuation of the work done
by [5–10,12–14] in which the renormalization of supersym-
metric gauge theories in the Wess–Zumino gauge was faced
by using BRST cohomology tools.

The paper is organized as follows. In Sect. 2 we discuss
the BRST quantization of the theory in the Wess–Zumino
gauge. In Sect. 3 we derive the large set of Ward identities
fulfilled by the quantized action. Further, we determine the
most general invariant counterterm and find the renormal-
ization factors of all fields, coupling constant, and external
BRST sources. Section 4 is devoted to the explicit evalu-
ation of the gauge field and gluino renormalization factors
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(Z A, Zλ) as well as of the non-renormalization of the gluon–
ghost–antighost vertex, Zg Z1/2

A Z1/2
c Z1/2

c̄ = 1. In Sect. 5 we
collect our conclusions. Finally, Appendix A is devoted to
notations and conventions.

2 Quantization of N = 1 Super Yang–Mills
in the Wess–Zumino gauge

As already mentioned, the advantage of the Wess–Zumino
gauge is that the number of field components is minimum.
There is, however, a drawback: the supersymmetry algebra
is realized in a non-linear way. More precisely, the algebra of
the generators of the supersymmetry δα, α = 1, 2, 3, 4, does
not close on translations. Instead, we have

{δα, δβ} = (γμ)αβ∂μ + (gauge transf.) + (field eqs.). (1)

As shown in [5–10], the most powerful and efficient way
to deal with the algebra (1) is constructing a generalized
BRST operator Q which collects both gauge and SUSY field
transformations, namely

Q = s + εαδα, (2)

where s is the usual BRST operator for gauge transforma-
tions and εα is a constant Majorana spinor parameter carrying
ghost number 1. To some extent, εα represents the ghost cor-
responding to the SUSY generators. The operator Q enjoys
the following important property:

Q2 = εα(γμ)αβ ε̄β∂μ, (3)

which enables us to quantize the theory by following the
BRST gauge-fixing procedure in a manifestly supersymmet-
ric invariant way.

Let us proceed by showing how this construction applies
to N = 1 Super Yang–Mills theory, whose classical action
in Euclidean space1 reads

SSYM =
∫

d4x

[
1

4
Fa

μν Fa
μν + 1

2
λ̄aα(γμ)αβ Dab

μ λbβ + 1

2
DaDa

]
,

(4)

where Dab
μ = (δab∂μ + g f acb Ac

μ) is the covariant derivative
in the adjoint representation of the gauge group SU (N ), λaα

is a Majorana spinor, Da is an auxiliary field and

Fa
μν = ∂μ Aa

ν − ∂ν Aa
μ + gfabc Ab

μ Ac
ν . (5)

1 Although we are employing here the Euclidean formulation of the
theory, it is worth to point that, as far perturbation theory is concerned,
the Minkowski space-time can be related to the Euclidean one through
a Wick rotation. In the present paper we shall limit ourselves to pertur-
bation theory.

The transformation of each field under the generalised BRST
operator Q reads

Q Aa
μ = −Dab

μ cb + ε̄α(γμ)αβλaβ,

Qλaα = gfabccbλcα − 1

2
(σμν)

αβεβ Fa
μν + (γ5)

αβεβDa,

QDa = gfabccbDc + ε̄α(γμ)αβ(γ5)
βη Dab

μ λb
η, (6)

Qca = 1

2
gfabccbcc − ε̄α(γμ)αβεβ Aa

μ,

Qc̄a = ba,

Qba = ∇ c̄a,

Q2 = ∇,

where we have introduced the translation operator

∇ := ε̄α(γμ)αβεβ∂μ. (7)

The fields (c̄a, ca) stand for the Faddeev–Popov ghosts, while
ba is the Lagrange multiplier needed to implement the Lan-
dau gauge fixing, ∂μ Aa

μ = 0. It is easy to check that the
action (4) is left invariant by the transformations (6), i.e.

QSSYM = 0. (8)

In order to quantize the theory, we need to introduce the
gauge-fixing term. This task can be accomplished by fol-
lowing the BRST construction, amounting to introduce the
gauge condition in a Q-exact way. One should notice that,
owing to property (3), the generalised BRST operator Q is in
fact nilpotent when acting on space-time integrated polyno-
mials in the fields and their derivatives. Adopting the Landau
gauge, ∂μ Aa

μ = 0, for the gauge-fixing term we write

Sgf = Q
∫

d4x(c̄a∂μ Aa
μ), (9)

so that, according to (6)

Sgf =
∫

d4x[c̄a∂μ Dab
μ cb+ba∂μ Aa

μ − c̄a ε̄α(γμ)αβ∂μλaβ ].
(10)

Therefore, the Super Yang–Mills action in the Wess–Zumino
and Landau gauge can be written as

S = SSYM + Sgf

=
∫

d4x

{
1

4
Fa

μν Fa
μν + 1

2
λ̄aα(γμ)αβ Dab

μ λbβ + 1

2
D2

+ba∂μ Aa
μ + c̄a[∂μDab

μ cb − ε̄α(γμ)αβ∂μλaβ ]
}

. (11)

From (6), (8), and (9), it follows immediately that

QS = 0, (12)

meaning that the gauge-fixing procedure has been done in a
BRST invariant way. Moreover, recalling that the generalized
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operator Q collects both gauge and supersymmetry transfor-
mations, one realizes that the expression (10) is the supersym-
metric generalization of the Landau gauge, as can be inferred
from the presence of the additional term c̄a ε̄α(γμ)αβ∂μλaβ ,
which contains the supersymmetry ghost ε̄α as well as the
gluino field λaβ .

Having quantized the theory, we are ready to write down
the large set of Ward identities and proceed with the algebraic
characterization of the most general invariant counterterm.
This will be the task of the next section.

3 Ward identities and algebraic characterization
of the invariant counterterm

In order to write down the set of Ward identities which will
be employed for the algebraic analysis of the model, we
need to introduce a set of external sources coupled to the
non-linear transformations appearing in (6). More precisely,
from (6), we need to introduce external sources coupled to
Q Aa

μ, Qλaβ, Q Da and Qca . With that purpose, we introduce
the following BRST doublets [3] of the sources:⎧⎨
⎩

QK a
μ = �a

μ

Q�a
μ = ∇K a

μ

,

⎧⎨
⎩

QLa = a

Qa = ∇La

⎧⎨
⎩

QT a = J a

Q J a = ∇T a
,

⎧⎨
⎩

QY aα = Xaα

Q Xaα = ∇Y aα
, (13)

and the Q-exact external action

Sext = Q
∫

d4x(−K a
μ Aa

μ + Laca − T aDa

+Y aαλa
α − T aY aα(γ5)αβεβ), (14)

leading to the following complete Q-invariant action �:

� = SSYM + Sgf + Sext, (15)

Q� = 0. (16)

Explicitly

� =
∫

d4x

{
1

4
Fa

μν Fa
μν + 1

2
λ̄aα(γμ)αβ Dab

μ λbβ

+1

2
DaDa + ba∂μ Aa

μ

+c̄a[∂μDab
μ cb − ε̄α(γμ)αβ∂μλaβ ]

+T a[gfabccbDc + ε̄α(γμ)αβ(γ5)
βη Dab

μ λb
η]

+La
[g

2
f abccbcc − ε̄α(γμ)αβεβ Aa

μ

]

−K a
μ[Dab

μ cb − ε̄α(γμ)αβλaβ ] − �a
μ Aa

μ

+Y aα
[
gfabccbλc

α − 1

2
(σμν)αβ Fa

μνε
β + (γ5)αβεβDa

]

+aca − J aDa + Xaαλa
α

−J aY aα(γ5)αβεβ + T a Xaα(γ5)αβεβ

}
. (17)

Notice that in expression (14) a term quadratic in the exter-
nal sources, i.e. T aY aα(γ5)αβεβ , has been introduced. Sim-
ilar terms are present also in the analysis done by [5–10].
As we shall see, it will be needed for renormalization pur-
poses. The external sources can be set to zero at the end,
after having identified the most general counter term and all
renormalization factors. The expression (17) represents the
starting point for the algebraic analysis of the model, namely
for the determination of the most general invariant countert-
erm compatible with all possible Ward identities fulfilled by
�.

3.1 Ward identities

The complete action � obeys a large set of Ward identities,
which we display below:

• The Slavnov–Taylor identity:

S(�) = 0, (18)

where

S(�) =
∫

d4x

{(
δ�

δAa
μ

+ �a
μ

)
δ�

δK a
μ

+
(

δ�

δλaα
+ Xaα

)
δ�

δY aα
+ δ�

δλaα
(γ5)αβεβ J a

+
(

δ�

δca
+ a

)
δ�

δLa
+
(

δ�

δDa
+ J a

)
δ�

δT a

− δ�

δDa
Xaα(γαβ)εβ + ba δ�

δc̄a

+(∇ c̄a)
δ�

δba
+ (∇K a

μ)
δ�

δ�a
μ

+ (∇Y aα)
δ�

δXaα

+(∇T a)
δ�

δ J a
+ (∇La)

δ�

δa

}
.

From the Slavnov–Taylor identity (18), it follows that the
so-called linearized operator B� [3],

B� =
∫

d4x

{
δ�

δK a
μ

δ

δAa
μ

+ δ�

δAa
μ

δ

δK a
μ

+�a
μ

δ

δK a
μ

+ δ�

δY aα

δ

δλaα

+ δ�

δλaα

δ

δY aα
+ Xaα δ

δY aα
+ δ

δλaα
(γ5)αβεβ J a

+ δ�

δLa

δ

δca
+ δ�

δca

δ

δLa
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+a δ

δLa
+ δ�

δT a

δ

δDa
+ δ�

δDa

δ

δT a

+J a δ

δT a
− Xaα(γαβ)εβ δ

δDa
+ ba δ

δc̄a

+(∇ c̄a)
δ

δba
+ (∇K a

μ)
δ

δ�a
μ

+ (∇Y aα)
δ

δXaα

+(∇T a)
δ

δ J a
+ (∇La)

δ

δa

}
, (19)

enjoys the following property:

B�B� = ∇, (20)

so that B� is nilpotent when acting on integrated func-
tionals.

• The Landau gauge-fixing condition and the antighost
equation [3]:

δ�

δba
= ∂μ Aa

μ,
δ�

δc̄a
+ ∂μ

δ�

δK a
μ

= 0. (21)

• The ghost Ward identity [3,11]:

Ga(�) = �a
class, (22)

where

Ga :=
∫

d4x

[
δ

δca
+ gfabcc̄b δ

δbc

]
, (23)

and

�a
class =

∫
d4x [gfabc(K b

μ Ac
μ − Lbcc

+ T bDa − Y bαλc
α) − a]. (24)

Notice that the breaking term �a
class appearing on the right-

hand side of (22) is linear in the quantum fields. As such,
�a

class is a classical breaking, not affected by quantum
corrections [3,11].

• The equation of motion of the auxiliary field Da :

δ�

δDa
= Da − J a + gfabccbT c + Y aα(γ5)αβ εβ. (25)

Again, being linear in the quantum fields, the right-hand
side of (25) is a classical breaking.

• The linearly broken gluino Ward identity, namely:

[
δ

δT a
+ (γ5)αβ εβ δ

δλa
α

+ gfabc
(

cb δ

δDc
− T b δ

δLc

)]
� = �̃a

class

(26)

where �̃a
class is a classical breaking

�̃a
class = 3gfabcε̄α(γμ)αβεβT b Ac

μ + ∇T b − gfabccb J c

+ε̄α(γμ)αη(γ5)
ηβεβ(∂μc̄a + K a

μ). (27)

We notice, in particular, that the gluino Ward identity (26)
follows by commuting the Slavnov–Taylor identity (18) with
Eq. (25).

Before turning to the algebraic analysis of the most gen-
eral invariant counterterm, let us spend a few words on the
role of the auxiliary fields Da , which we have introduced
in the expression of the starting action SSYM, (4). As it is
apparent from (4), the fields Da enter the action SSYM only
quadratically. As such, they do not play any role in the loop
calculations. Though, they are needed in order to write down
the Slavnov–Taylor identities (18), which are at the basis of
the algebraic renormalization setup [3]. Here, we have two
equivalent options. The first option is that of starting from
the beginning by including the Da fields in the action, (4), as
well as in the Q-transformations (6). In this case, the BRST
operator Q enjoys the important property

Q2 = ∇, (28)

which enables us to construct the Slavnov–Taylor identi-
ties in the way described before. The second option is that
of not including the fields Da from the beginning; see, for
instance, [6–8]. This means that the fields Da are absent in
both the starting action and the Q-transformations. However,
the BRST operator Q does not display now the property (28).
Instead, one has

Q2 = ∇ + eqs. of motion. (29)

In this case, in order to establish the Slavnov–Taylor iden-
tities, an additional care has to be taken. The presence of
terms proportional to the equations of motion in (29) requires
the introduction of terms which are quadratic in the BRST
sources [6–8]. These terms are precisely of the same kind of
DaDa . At the end of this second procedure, one is able to
write down Slavnov–Taylor identities which are exactly of
the same type of (18) [6–8], so that both options give the same
results for the characterization of the invariant counterterm.

3.2 Algebraic characterization of the invariant counterterm
and renormalizability of the N = 1 Super-Yang–Mills

In order to determine the most general invariant countert-
erm which can be freely added to each order, we follow
the algebraic renormalization framework [3] and perturb the
complete action � by adding an integrated local polynomial
in the fields and sources with dimension four and vanish-
ing ghost number, �count, and we require that the perturbed
action, (� +ω�count), where ω is an infinitesimal expansion
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parameter, obeys the same Ward identities as fulfilled by �

to the first order in the parameter ω, namely

S(� + ω�count) = 0 + O(ω2), (30)

δ(� + ω�count)

δba
= ∂μ Aa

μ + O(ω2),

(
δ

δc̄a
+ ∂μ

δ

δK a
μ

)
(� + ω�count) = 0 + O(ω2), (31)

Ga(� + ω�count) = �a
class + O(ω2), (32)

δ(� + ω�count)

δDa
= Da − J a + gfabccbT c

+Y aα(γ5)αβ εβ + O(ω2), (33)

[
δ

δT a
+ (γ5)αβ εβ δ

δλa
α

+ gfabc
(

cb δ

δDc
− T b δ

δLc

)]

×(� + ω�count) = �̃a
class + O(ω2). (34)

To the first order in the expansion parameter ω, (30), (31),
(32), (33), and (34) give rise to the following constraints:

B�(�count) = 0, (35)

δ

δba
�count = 0,

(
δ

δc̄a
+ ∂μ

δ

δK a
μ

)
�count = 0, (36)

Ga �count = 0, (37)

δ

δDa
�count = 0, (38)

and[
δ

δT a
+ (γ5)αβ εβ δ

δλa
α

+ gfabc
(

cb δ

δDc
− T b δ

δLc

)]

×�count = 0, (39)

where B� stands for the linearized operator of (19). The first
condition, (35), tells us that �count belongs to the cohomol-
ogy of the operator B� in the space of the local integrated
polynomials in the fields and external sources of dimension
bounded by four. From the general results on the cohomol-
ogy of Yang–Mills theories, see [3] and references therein,
it follows that �count can be parametrized as follows:

�count = a0 SSYM + B��(−1). (40)

where a0 is a free coefficient and �(−1) stands for the most
general integrated local polynomial in the fields and sources,
with ghost number −1 and dimension 3.

From Table 1, the most general expression for �(−1) can
be written as

�(−1) =
∫

d4x {a1 ∂μc̄a Aa
μ + a2 K a

μ Aa
μ + a3 T a ∂μ Aa

μ

+a4 bac̄a + a5 baT a + a6 Da c̄a

+a7 J aT a + a8 λaαYaα + a9 Y aα (γ5)αβεβT a

+a10 gfabc c̄a c̄bcc + a11 J ac̄a

+a12 c̄a εα (γ5)αβ Y aβ + a13 gfabcT aT bcc

+a14 Da T a + a15 gfabc cac̄bT c + a16 ca La},
(41)

with ai (i = 1 to 16) being arbitrary coefficients. It is worth to
point out that, according to Table 1, the ultraviolet dimension
of both ghost and antighost fields, (c, c̄), has been chosen to
be equal to 1. This feature turns out to be very helpful, as
enables us to assign positive ultraviolet dimension 1/2 to
the supersymmetric parameter ε, a property which greatly
simplifies the analysis of the invariant counterterm �count.

From (36), (37), (38), and (39), it follows that

a1 = a2, a14 = −a0

2
, a9 =

(a0

2
− a8

)
and (42)

a3 = a4 = a5 = a6 = a7 = a10 = a11 = a12 = 0,

a13 = a15 = a16 = a17 = a18 = a19 = 0, (43)

leading to

�(−1) =
∫

d4x

{
a1(∂μc̄a + K a

μ)Aa
μ + a8Y aαλa

α

+
(a0

2
− a8

)
Y aα(γ5)αβεβT a − a0

2
DaT a

}
. (44)

Therefore, for the exact part of (40), i.e. B��(−1), we get

B��(−1) =
∫

d4x

{
a1

(
δ�

δAa
μ

+ �a
μ + ∂μba

)
Aa

μ

+a8

(
δ�

δλa
α

+ Xaα

) (
λa

α − (γ5)αβεβ T a)

+a0

2

(
δ�

δλa
α

+ Xaα

)
(γ5)αβεβ T a

−a0

2

(
δ�

δDa
+ J a

) (
Da − Y aα(γ5)αβεβ

)

−a8

(
δ�

δDa
+ J a

)
Y aα(γ5)αβεβ

−a1c̄a δ�

δc̄a
− a1 K a

μ

δ�

δK a
μ

+ a8Y aα δ�

δY aα

+a0

2
T a δ�

δT a

}
, (45)
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Table 1 Quantum numbers of all fields and sources. “A” stands for anticommuting, while “C” stands for commuting

A λ D c c̄ b K �  T J L Y X ε ε̄

Dim 1 3
2 2 1 1 2 2 3 3 1 2 2 3

2
5
2

1
2

1
2

Ghost# 0 0 0 1 −1 0 −1 0 −1 −1 0 −2 −1 0 1 1

Nature C A C A A C A C A A C C C A C C

yielding the final form of the most general invariant coun-
terterm

�count =
∫

d4x

{
a0

4
Fa

μν Fa
μν + a1

δ�SYM

δAa
μ

Aa
μ

+ (a0 − 2a8)

2
λ̄aα(γμ)αβ Dab

μ λbβ

+a1(∂μc̄a + K a
μ)∂μca + (a1 + a8)

×ε̄α(γμ)αβλaβ(∂μc̄a + K a
μ)

+(a0 − 2a8)ε̄
α(γμ)αβ(γ5)

βηT a Dab
μ λb

η

−a1gfabcT a ε̄α(γμ)αβ(γ5)
βηλb

η Ac
μ

−a1ε̄
α(γμ)αβεβ Aa

μLa

+
(

a8 − a0

2

)
ε̄α(γμ)αβεβ T a Dab

μ T b

+
(a0

2
− a8

)
(Y aα(γ5)αβεβ)2

−1

2
(a1 + a8)Y

aα(σμν)αβεβ(∂μ Aa
ν − ∂ν Aa

μ)

−
(

a1 + a8

2

)
gfabcY aα(σμν)αβεβ Ab

μ Ac
ν

}
. (46)

One sees that �count contains three arbitrary coefficients,
a0, a1, and a8, which will identify the renormalization factors
of all fields, sources, and coupling constant. To complete the
analysis of the algebraic renormalization of the model, we
need to show that the counterterm �count can be reabsorbed
into the starting action � through a redefinition of the fields
and parameters {φ}, φ = (A, λ, b, c, c̄,D, ε), of the sources
{S}, S = (K ,�,, T, J, L , Y, X), and coupling constant g,
namely

�(φ, S, g)+ω�count(φ, S, g)=�(φ0, S0, g0)+O(ω2),

(47)

where (φ0, S0, g0) stand for the so-called bare fields, sources,
and coupling constant:

φ0 = Z1/2
φ φ, S0 = ZS S, g0 = Zgg, (48)

and the renormalization factors Z can be written as

Z1/2
φ = (1 + ω zφ)1/2 = 1 + ω

zφ

2
+ O(ω2),

ZS = 1 + ω zS, Zg = 1 + ωzg. (49)

Moreover, in the present case, a little care has to be taken
with the potential mixing of quantities which have the same

quantum numbers. In fact, from equation (45) one can easily
notice that the field λaα and the combination γ5εT a have the
same dimension and quantum numbers as well as the field Da

and the combination Y aγ5ε, as can be checked from Table 1.
As a consequence, these quantities can mix at the quantum
level, a well-known property of renormalization theory. This
feature can be properly taken into account by writing the
renormalization of the fields λ and D in matrix form, i.e.

λaα
0 = Z1/2

λ λaα + ω z1 T a(γ5)
αβεβ (50)

and

Da
0 = Z1/2

D Da + ω z2 Y aα(γ5)αβεβ, (51)

while the remaining fields, sources, and parameters still obey
(3.2).

From direct inspection of equation (47), the renormaliza-
tion factors of all fields, sources, and parameters are given
by

Z1/2
A = 1 + ω

(a0

2
+ a1

)
,

Zg = 1 − ω
a0

2
,

Z1/2
λ = 1 + ω

(a0

2
− a8

)
,

(52)

while the remaining factors are

ZT = Z−1/2
g Z1/4

A ,

Zε = Z1/2
g Z−1/4

A ,

ZY = Z−1/2
g Z1/4

A Z−1/2
λ ,

Z1/2
b = Z−1/2

A ,

ZL = Z1/2
A ,

Z1/2
c = Z1/2

c̄ = ZK = Z−1/2
g Z−1/4

A ,

Z = Z1/2
g Z1/4

A ,

Z J = 1,

ZD = 1,

Z X = Z−1/2
λ ,

Z� = Z−1/2
A

(53)

and

z1 = −z2 = a8 − a0

2
. (54)

123
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We have thus completed the all-order proof of the algebraic
renormalization of N = 1 supersymmetric Yang–Mills the-
ories. A few remarks are in order. Three independent parame-
ters, a0, a1, a8, are needed to renormalize the theory. Accord-
ing to (52), these parameters correspond to the renormaliza-
tion of the gauge coupling constant g, of the gauge field Aa

μ

and of the gluino λaα . The renormalization constants of all
other fields, sources, and parameters can be written down as
suitable combinations of Zg, Z A, Zλ, as expressed by (53),
(54). We remark that the celebrated non-renormalization the-
orem of the gluon–ghost–antighost vertex of the Landau

gauge [3,11], i.e. Z1/2
c Z1/2

c̄ Zg Z1/2
A = 1, remains valid in the

supersymmetric version of the theory. Moreover, although
belonging to the same multiplet, (52) suggest that the renor-
malization constant of the gauge field, Z A, turns out to be
different from that of the gluino, Zλ. That this will be in fact
the case will be shown in the next section, where the explicit
three-loop expression of Z A, Zλ will be reported.

4 Three-loop calculation of the renormalization factors
ZA and Zλ and check of the non-renormalization
theorem of the gluon–ghost–antighost vertex

We explicitly computed the wave-function renormalization
constants for the bosonic and fermionic degrees of freedom
Z A, Zλ, and Zc and the gauge coupling renormalization con-
stant Zg up to three loops in perturbation theory. As renor-
malization scheme we used the minimal subtraction scheme
with dimensional reduction [15] (DRED) as regulator. Such
renormalization scheme is commonly denoted DR. Let us
mention that we applied DRED in the component field for-
malism and implemented its mathematical consistent formu-
lation [16,17]. It is well known that DRED in this formula-
tion breaks supersymmetry in higher orders of perturbation
theory [18]. Nevertheless, for a supersymmetric Yang–Mills
theory it has been proven explicitly that DRED preserves
supersymmetry up to three loops [19,20].

The advantage of this scheme is that all ultraviolet (UV)
counterterms are polynomial both in external momenta and
masses [21,22]. The most effective approach is its use in com-
bination with multiplicative renormalization. This amounts
in general to solving recursively the equation

Za = 1 − Kε[�a(p2)Za], (55)

where Kε[ f (ε)] stands for the singular part of the Laurent
expansion of f (ε) in ε around ε = 0. �a(p2) denotes the
renormalized Green function with only one external momen-
tum p2 kept non-zero. Za denotes the renormalization con-
stant associated with the Green function �a . In this case, the
renormalization of �a through (l + 1)-loop order requires
the renormalization of the Lagrangian parameters like cou-
plings, masses, gauge parameters, etc. up to l-loop order. For

the present calculation we considered the renormalization of
the Green functions corresponding to the gauge boson prop-
agator, its ghost and its Majorana superpartner propagators
and the vertices containing ghost-gauge boson and Majorana
fermion–gauge boson interactions.

For the explicit calculation of Feynman diagrams up to
three-loop order, we used a well-tested chain of programs:
QGRAF [23] generates all contributing Feynman diagrams.
The output is passed via q2e [24,25], which transforms
Feynman diagrams into Feynman amplitudes, toexp [24,25]
that generates FORM [26] code. The latter is processed by
MINCER [27] which computes analytically massless propa-
gator diagrams up to three loops and outputs the ε expansion
of the result. Here, ε = (4 − d)/2 is the regulator of Dimen-
sional Regularization with d being the space-time dimension
used for the evaluation of the momentum integrals.

We performed all the calculations in a linear gauge and
only in the last step specified the results to the Landau gauge.
This procedure allows us to check explicitly the gauge inde-
pendence of the gauge coupling renormalization constant. In
our setup, the gauge parameter ξ is defined through the gauge
boson propagator

D A
μν = −i

gμν − (1 − ξ)
qμqν

q2

q2 + iε
. (56)

The three-loop expression for the wave-function renormal-
ization constant of the Majorana field reads

Zλ = 1 − 1

ε

( α

4π

)
CAξ

+
( α

4π

)2
C2

A

[
1

4ε2 3ξ(1 + ξ) − 1

8ε
(3 + 8ξ + ξ2)

]

+
( α

4π

)3
C3

A

[
− 1

8ε3 ξ(9 + 9ξ + 4ξ2)

+ 1

4ε2 (3 + 11ξ + 7ξ2 + ξ3)

+ 1

96ε
(66 − 108Z3 − 3ξ(53 + 8Z3)

−3ξ2(13 + 4Z3) − 10ξ3)

]
. (57)

Here Z3 = ζ3 is the Riemann ζ -function, α = g
4π

and CA is
the quadratic Casimir invariant in the adjoint representation.
In the special case of the Landau gauge, for which ξ = 0, it
reduces to

Zλ = 1 −
( α

4π

)2 3

8ε
C2

A

+
( α

4π

)3
C3

A

[
+ 3

4ε2 + 1

48ε
(33 − 54Z3)

]
. (58)

For the three-loop expression of the wave-function renormal-
ization constant of the gauge boson, we obtained

Z A = 1 +
( α

4π

) 1

2ε
CA(3 − ξ)

123
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+
( α

4π

)2
C2

A

[
1

8ε2 (−9 − 3ξ+2ξ2)
1

16ε
(27−11ξ − 2ξ2)

]

+
( α

4π

)3
C3

A

[
1

16ε3 (27 + 9ξ − 2ξ3)

+ 1

96ε2 (−369 − 39ξ + 60ξ2 + 14ξ3)

+ 1

96ε
(533 − 7ξ3 − 114Z3 − 3ξ2(11 + 2Z3)

−ξ(113+24Z3))

]
. (59)

It is an easy exercise to obtain its expression for the Landau
gauge,

Z A = 1 +
( α

4π

) 3CA

2ε
+
( α

4π

)2
C2

A

[
− 9

8ε2 + 27

16ε

]

+
( α

4π

)3
C3

A

[
27

16ε3 − 123

32ε2 + 1

96ε
(533 − 114Z3)

]
.

(60)

The expression for the three-loop wave-function renormal-
ization constant of the ghost is given by

Zc = 1 +
( α

4π

) 1

4ε
CA(3 − ξ)

+
( α

4π

)2
C2

A

[
3

32ε2 (−9 + ξ2) + 1

32ε
(21 + ξ)

]

+
( α

4π

)3
C3

A

[
1

128ε3 (189 + 9ξ − 9ξ2 − 5ξ3)

+ 1

384ε2 (−891 + 12ξ + 39ξ2 + 8ξ3)

+ 1

192ε
(139 − 3ξ3 + 114Z3+6ξ2(−1+Z3)+24ξ Z3)

]
.

(61)

The simplified formula for the case of the Landau gauge reads

Zc = 1 +
( α

4π

) 3

4ε
CA +

( α

4π

)2
C2

A

[
− 27

32ε2 + 21

32ε

]

+
( α

4π

)3
C3

A

[
189

128ε3 − 297

128ε2 + 1

192ε
(139+114Z3)

]
.

(62)

Our results for the three-loop renormalization constant of the
gauge coupling completely agree with the previous calcula-
tions of Refs. [20,28,29]. For convenience of the reader we
quote them below

Zg = 1 −
( α

4π

) 3

2ε
CA +

( α

4π

)2
C2

A

[
27

8ε2 − 3

2ε

]

+
( α

4π

)3
C3

A

[
− 135

16ε3 + 33

4ε2 − 7

2ε

]
. (63)

Using (60), (62), and (63) one can immediately test the non-
renormalization of the gluon–ghost–antighost vertex, given
in (53), i.e. Zg Z1/2

A Zc = 1.

5 Conclusion

In this work the issue of the renormalization of N = 1 Super
Yang–Mills theory has been addressed in the Wess–Zumino
gauge, by employing the Landau condition. Following the
setup already outlined by the authors [5–10], the renormaliza-
tion of the theory has been investigated within the Algebraic
Renormalization framework [3], through BRST cohomology
tools.

Our main result is summarized by (52), (53). In the Landau
gauge, only three renormalization factors, Zg, Z A, Zλ, are
needed in order to renormalize the theory. The renormaliza-
tion constants of all other fields can be expressed as suitable
combinations of Zg, Z A, Zλ, as displayed by (53). Moreover,
although belonging to the same multiplet, the renormaliza-
tion constant of the gauge field, Z A, turns out to be different
from that of the gluino, Zλ, as explicitly checked through
the three-loop computations; see (58) and (60). As already
mentioned, this feature is due to the use of the Wess–Zumino
gauge, in which the supersymmetry is realized in a non-linear
way. Further, the non-renormalization theorem of the gluon–
ghost–antighost vertex has been shown to remain valid in
N = 1 Super Yang–Mills.

Finally, although we have limited ourselves to consider
only the case of pure N = 1 Super Yang–Mills theory, the
inclusion of matter fields can be done straightforwardly. Let
us also point out that the non-renormalization of the gluon–
ghost–antighost vertex remains valid in presence of matter
fields, as a consequence of the ghost Ward identity, (22),
which still holds in presence of matter [3,6–8].
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Appendix A: Notations and conventions in Euclidean
space-time

Units: h̄ = c = 1.
Euclidean metric: δμν = diag(+,+,+,+).
Wick rotations: X0 → −i X4 ⇒ ∂0 → +i∂4, A0 → +i A4

Gamma matrices:

γ4 =
(

0 1

1 0

)
, γk = −i

(
0 σk

−σk 0

)
.

123
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Pauli matrices:

σ4 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
,

σ3 =
(

1 0
0 −1

)
.

The Gamma matrices obey the following properties:

γμ = γ †
μ (64)

{γμ, γν} = 2δμν (65)

We also define the γ5 matrix as

γ5 = γ4γ1γ2γ3 =
(
1 0
0 −1

)

with the following properties:

{γ5, γμ} = 0, (γ5)
2 = 1, γ

†
5 = γ5. (66)

The charge conjugation matrix is

C = γ4γ2 = i

(
σ2 0
0 −σ2

)
(67)

with the following properties:

C−1 = −C = CT , C−1γμC = −γ T
μ (68)

The σμν tensor is defined as

(σμν)
β
α ≡ 1

2
[γμ, γν] β

α (69)

and has the property σ †
μν = −σμν .

Majorana fermions:
The Majorana condition reads

λC = λ = Cλ̄T ⇐⇒ λ̄ = λT C, (70)

leading to the following relations:

λ̄γμε = ε̄γμλ and λ̄γμγ5ε = −ε̄γμγ5λ. (71)

Fierz identity (in Euclidean space-time):

ε1ε̄2 = 1

4
(ε̄2ε1)1 + 1

4
(ε̄2γ5ε1)γ5 + 1

4
(ε̄2γμε1)γμ

−1

4
(ε̄2γμγ5ε1)γμγ5 − 1

8
(ε̄2σμνε1)σμν. (72)

Indices notations:

• The Lorentz indices: μ, ν, ρ, σ, λ ∈ {1, 2, 3, 4};
• The spinor indices: α, β, γ, δ, η ∈ {1, 2, 3, 4};
• The SU (N ) group indices: a, b, c, d, e ∈ {1, . . . , N 2 −

1}.
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