37 research outputs found

    O-GlcNacylation Links TxNIP to Inflammasome Activation in Pancreatic β Cells

    Get PDF
    Thioredoxin interacting protein (TxNIP), which strongly responds to glucose, has emerged as a central mediator of glucotoxicity in pancreatic β cells. TxNIP is a scaffold protein interacting with target proteins to inhibit or stimulate their activity. Recent studies reported that high glucose stimulates the interaction of TxNIP with the inflammasome protein NLRP3 (NLR family, pyrin domain containing 3) to increase interleukin-1 β (IL1β) secretion by pancreatic β cells. To better understand the regulation of TxNIP by glucose in pancreatic β cells, we investigated the implication of O-linked β-N-acetylglucosamine (O-GlcNAcylation) in regulating TxNIP at the posttranslational level. O-GlcNAcylation of proteins is controlled by two enzymes: the O-GlcNAc transferase (OGT), which transfers a monosaccharide to serine/threonine residues on target proteins, and the O-GlcNAcase (OGA), which removes it. Our study shows that TxNIP is subjected to O-GlcNAcylation in response to high glucose concentrations in β cell lines. Modification of the O-GlcNAcylation pathway through manipulation of OGT or OGA expression or activity significantly modulates TxNIP O-GlcNAcylation in INS1 832/13 cells. Interestingly, expression and O-GlcNAcylation of TxNIP appeared to be increased in islets of diabetic rodents. At the mechanistic level, the induction of the O-GlcNAcylation pathway in human and rat islets promotes inflammasome activation as evidenced by enhanced cleaved IL1β. Overexpression of OGT in HEK293 or INS1 832/13 cells stimulates TxNIP and NLRP3 interaction, while reducing TxNIP O-GlcNAcylation through OGA overexpression destabilizes this interaction. Altogether, our study reveals that O-GlcNAcylation represents an important regulatory mechanism for TxNIP activity in β cells

    Effets paracrines de la leptine produite par l’estomac

    No full text
    La leptine, produit du gène ob, est une protéine de 16 kDa qui agit par des mécanismes centraux pour contrôler l’équilibre énergétique. Outre le tissu adipeux, d’autres organes dont l’estomac produisent également la leptine. Les récepteurs de la leptine ont été identifiés dans le tractus digestif, notamment dans l’estomac, l’intestin, le foie, le pancréas. Les études récentes suggèrent que la leptine gastrique puisse agir localement sur de nouvelles cibles pour contrôler les fonctions intestinales d’absorption, de sécrétion et de développement. De plus, elle pourrait jouer un rôle dans la physiopathologie intestinale. Cet article résume les données expérimentales suggérant que la leptine soit une nouvelle hormone du tractus gastro-intestinal.Leptin, a 16 kilodalton protein-encoded by the ob gene, is involved in the regulation of food intake, body composition, and energy expenditure through a central feedback mechanism. Initially thought to be adipocyte-specific, the ob gene, as well as the leptin receptor, has been found in a variety of other tissues. Relevant to this review, the leptin gene and its receptor have been identified in the stomach, intestine, liver, and pancreas. Recent data also suggest that gut leptin may act locally within the gastrointestinal tract to influence intestinal functions such as nutrient absorption and may have a physiopathological implication. This review emphasises the concept that leptin may be a new gastrointestinal hormone

    Epithelial insulin signalling: A gatekeeper of the gut barrier function?

    No full text
    Accepted abstracts will be published in the Abstract Volume, a supplement issue of Diabetologia, the journal of the EASD. Furthermore abstracts accepted for presentation and discussion will be published on the Association’s website www.easd.org from 1 July 2022.International audienc

    MondoA/ChREBP: The usual suspects of transcriptional glucose sensing; Implication in pathophysiology

    No full text
    Identification of the Mondo glucose-responsive transcription factors family, including the MondoA and MondoB/ChREBP paralogs, has shed light on the mechanism whereby glucose affects gene transcription. They have clearly emerged, in recent years, as key mediators of glucose sensing by multiple cell types. MondoA and ChREBP have overlapping yet distinct expression profiles, which underlie their downstream targets and separate roles in regulating genes involved in glucose metabolism. MondoA can restrict glucose uptake and influences energy utilization in skeletal muscle, while ChREBP signals energy storage through de novo lipogenesis in liver and white adipose tissue. Because Mondo proteins mediate metabolic adaptations to changing glucose levels, a better understanding of cellular glucose sensing through Mondo proteins will likely uncover new therapeutic opportunities in the context of the imbalanced glucose homeostasis that accompanies metabolic diseases such as type 2 diabetes and cancer. Here, we provide an overview of structural homologies, transcriptional partners as well as the nutrient and hormonal mechanisms underlying Mondo proteins regulation. We next summarize their relative contribution to energy metabolism changes in physiological states and the evolutionary conservation of these pathways. Finally, we discuss their possible targeting in human pathologies

    Modulation of exocrine pancreatic secretion by leptin through CCK1-receptors and afferent vagal fibres in the rat

    No full text
    In this report, we determined whether leptin could modify the exocrine pancreatic secretion of anaesthetized rats in vivo. Intravenous injection of recombinant murine leptin resulted in a time- and dose-dependent stimulation of exocrine pancreatic secretion, maximally observed with 30 nmol/kg of leptin. This stimulation of pancreatic water, bicarbonate, and protein output was abolished by atropine, hexamethonium, L364,718 ([3S(-)-N-(1,3-dihydro-1-methyl-2-oxo-5-phenyl-1H-1,4-benzodiazepine]), a cholecystokinin CCK(1) receptor antagonist or perivagal capsaicin pretreatment, but unaffected by the CCK(2) receptor antagonist L365,260 ([3R(+)-N-(2,3-dihydro-1-methyl-2-oxo-5-phenyl-1H-1,4-benzodiazepin-3yl)-N'-(3-methylphenyl)urea]). In addition, the physiological dose of 3 nmol/kg leptin, ineffective per se, potentiated the secretory effect of 45 pmol/kg of cholecystokinin octapeptide (CCK-8) on exocrine pancreatic secretion. Furthermore, intraperitoneal leptin induced a rapid increase in plasma CCK levels in vivo in the rat. In conclusion, exogenous leptin can modulate exocrine pancreatic secretion through mechanisms involving CCK(1) receptors and capsaicin-sensitive afferent fibres in the rat. Whether this may have a physiological relevance in the postprandial regulation of exocrine pancreatic secretion and thus in nutrient digestion will require further investigations
    corecore