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Thioredoxin interacting protein (TxNIP), which strongly responds to glucose, has emerged

as a central mediator of glucotoxicity in pancreatic β cells. TxNIP is a scaffold protein

interacting with target proteins to inhibit or stimulate their activity. Recent studies reported

that high glucose stimulates the interaction of TxNIP with the inflammasome protein

NLRP3 (NLR family, pyrin domain containing 3) to increase interleukin-1 β (IL1β) secretion

by pancreatic β cells. To better understand the regulation of TxNIP by glucose in

pancreatic β cells, we investigated the implication of O-linked β-N-acetylglucosamine

(O-GlcNAcylation) in regulating TxNIP at the posttranslational level. O-GlcNAcylation

of proteins is controlled by two enzymes: the O-GlcNAc transferase (OGT), which

transfers a monosaccharide to serine/threonine residues on target proteins, and the

O-GlcNAcase (OGA), which removes it. Our study shows that TxNIP is subjected to

O-GlcNAcylation in response to high glucose concentrations in β cell lines. Modification

of the O-GlcNAcylation pathway through manipulation of OGT or OGA expression or

activity significantly modulates TxNIP O-GlcNAcylation in INS1 832/13 cells. Interestingly,

expression and O-GlcNAcylation of TxNIP appeared to be increased in islets of

diabetic rodents. At the mechanistic level, the induction of the O-GlcNAcylation

pathway in human and rat islets promotes inflammasome activation as evidenced

by enhanced cleaved IL1β. Overexpression of OGT in HEK293 or INS1 832/13 cells

stimulates TxNIP and NLRP3 interaction, while reducing TxNIP O-GlcNAcylation through

OGA overexpression destabilizes this interaction. Altogether, our study reveals that

O-GlcNAcylation represents an important regulatory mechanism for TxNIP activity in

β cells.

Keywords: O-GlcNAcylation, TXNIP (thioredoxin-interacting protein), pancreatic beta cells, hyperglycemia,
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INTRODUCTION

Chronic exposure to high glucose exerts deleterious effects
on pancreatic β cell function leading to a disruption of their
secretory capacities and/or a decrease in their cellular mass. The
mechanisms driving β cells destruction are numerous including
increased fatty acid cellular content, reactive oxygen species
(ROS) production, macrophage infiltration, inflammation
processes, and/or increased flux through the hexosamine
biosynthetic pathway. Over the past years, Thioredoxin
interacting protein (TxNIP) has emerged as a major mediator of
β cell dysfunction, being one of the most up-regulated genes in
response to hyperglycemia (1–3). As part of a negative-feedback
loop, TxNIP inhibits glucose uptake and promotes caspase-1
cleavage, contributing to glucose-dependent β-cell death (2–6).
TxNIP also regulates pro-inflammatory processes through the
inflammasome activation via binding to NLRP3 (NOD-like
receptor family pyrin domain containing 3) (7, 8). In this
context, TxNIP is an important actor of pancreatic β cell biology
and its tight regulation appears necessary for β cell survival.

The mechanisms driving TxNIP expression involve a
crosstalk between several transcription factors. The Txnip
promoter contains two carbohydrate response elements
(ChoRE) for binding of the glucose sensitive transcription
factor Carbohydrate Responsive Element Binding Protein
(ChREBP) (2). While the Forkhead boxO1 transcription factor
(FoxO1) was reported to up-regulate Txnip expression in
neurons and endothelial cells, it was shown to significantly
decrease its expression in pancreatic β cells. Mechanistically,
FoxO1 was reported to prevent the glucose-induced Txnip
expression by reducing the glucose-induced binding of
ChREBP at the promoter, suggesting that FoxO1 competes
with ChREBP for binding to the Txnip promoter. The TxNIP
protein is also regulated at the posttranslational level through
phosphorylation (9). In the current study, we addressed
whether the TxNIP protein could be regulated through O-
GlcNAcylation, a posttranslational modification that depends on
intracellular glucose flux through the hexosamine biosynthetic
pathway. O-GlcNAcylation, which is linked to glucotoxicity
in many cell types, modulates protein activity and/or partner
interactions (10, 11). O-GlcNAcylation requires the activity
of two enzymes: the O-GlcNAc transferase (OGT), which
transfers the monosaccharide to serine/threonine residues on
target proteins, and the O-GlcNAcase (OGA), which hydrolyses
this sugar.

Our study demonstrates that the TxNIP protein is
modified by O-GlcNAcylation in both rodent and human
pancreatic β cells and that this modification enhances its
interaction with its binding partner NLRP3, leading in turn to
inflammasome activation.

Abbreviations: ChoRE, carbohydrate response element; ChREBP, carbohydrate

responsive element binding protein; FoxO1, forkhead boxO1 transcription

factor; GK, Goto-Kakizaki; IGFBP1, insulin-like growth factor-binding protein

1; IL1β, interleukin 1β; NLRP3, NOD-like receptor family pyrin domain

containing 3; OGA, O-GlcNAcase; O-GlcNAc, O-linked N-acetylglucosamine;

OGT, O-GlcNAc transferase; qPCR, quantitative real time PCR; ROS, reactive

oxygen species; TxNIP, thioredoxin-interacting protein; BRET, bioluminescence

resonance energy transfer.

RESEARCH DESIGN AND METHODS

Animals
Animal experiments were performed in agreement with
protocols approved by French guidelines. Eight week-old male
C57BL/6J and db/db mice were purchased from Harlan R©. Mice
were adapted to the environment for 1-week prior to study and
maintained in a 12-h light/dark cycle with water and regular diet
(65% carbohydrate, 11% fat, and 24% protein). When specified
mice were fasted for 24 h and then refed for 18 h with a high
carbohydrate diet (72.2% carbohydrate, 1% fat, 26.8% protein).
Ten weeks-old male Wistar rats were purchased from Harlan R©.
Goto-Kakizaki (GK) rats were obtained from the GK/Par colony
obtained from the Movassat’s laboratory (12).

Isolation of Islets of Langerhans From
Rodent Models
Islets of Langerhans were obtained from 3 months old Wistar
and Goto-Kakizaki (GK) rats by collagenase digestion and
Ficoll gradient and then hand-picked as described previously
(13). Freshly isolated islets were cultured in 6 wells plates and
incubated in 5.5 or 16.7mM glucose in the absence or presence of
100µM PUGNAc (Sigma) for 72 h in RPMI 1640 supplemented
with 10% fetal calf serum, 100 U/ml penicillin, 100 mg/ml
streptomycin and 10 mM L-glutamine.

Culture and Transfection Experiments
in HEK293
Human embryonic kidney cells (HEK293) were grown in 6
wells plates in 25mMD-glucose DMEM supplemented with 10%
fetal calf serum (Sigma R©). The OGT and OGA plasmids were
previously described (10), the TxNIP plasmid was purchased
from Genecust R© and pcDNA3-N-Flag-NLRP3 was a gift from
Bruce Beutler (Addgene plasmid # 75127). Transfections of
HEK293 cell were performed using Lipofectamine 2000 and
OptiMEM, and 1 µg of plasmid/well.

Culture and Transfection Experiments in
INS1 832/13 Cells
INS1 832/13 cells (kindly provided by Dr. CB Newgard, Duke
University Medical Center, Durham, NC) were cultured in
RMPI 1640 supplemented with 10% fetal calf serum (Life
Technology R©), 100 U/ml penicillin, 100 mg/ml streptomycin,
1mM sodium pyruvate, 10mM HEPES and β-mercaptoethanol.
Cells were then washed, starved during 6 h in 2.5mM glucose
without serum and further incubated with 2.5 or 20mM glucose
during 24 h. INS1 832/13 cells were infected with shOGT,
shcontrol, GFP (Genecust R©) and OGA adenoviruses (a kind gift
from Dr. Xao Yang) during 24 h. Cells were then washed, starved
during 6 h in 2.5mM glucose without serum and stimulated in 5
or 25mM during 24 h.

For TxNIP reporter assays, INS1 832/13 cells were transfected
with a Txnip luciferase reporter (a promoter containing the two
tandem ChoRE) and a plasmid expressing β Galactosidase (0.2
µg DNA of each plasmid per well) using Lipofectamine 2000.
β Galactosidase assays were performed for normalization of the
ChoRE luciferase activity. The luciferase assay was conducted
using the dual luciferase substrate system (E1501; Promega,
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Madison, WI), and the result was normalized with the internal
control Renilla luciferase. Each experiment was repeated at least
three times.

For Bioluminescence Resonance Energy Transfer (BRET)
experiments, INS1 832/13 cells were transfected with the cDNA
coding for a biosensor (14, 15) based on BRET, in which
the precursor pro–IL1β is fused at its terminals to RLuc8
(a variant of Renilla luciferase) and Venus (a variant of
yellow fluorescent protein). Forty-eight hours after transfection
BRET measurements were performed as described previously
(16). Results are expressed in milliBRET units as defined
previously (17).

Isolation, Culture, and Analysis of Human
Islets
Human islets were isolated from pancreata harvested
from adult brain-dead individuals in the context of the
traceability requirements for our clinical islet transplantation
program (clinicaltrials.gov, NCT01123187, NCT00446264,
NCT01148680) as described previously (18). The experimental
design was approved in agreement with French regulations, our
Institutional Ethical Committee of the University of Lille and
the Center Hospitalier Régional Universitaire de Lille. Islets
were allowed to recover in culture after isolation for at least 18 h
before cell treatments. For experiments investigating glucose
dependence of TxNIP, OGT, and OGAmRNA and protein levels,
human islets were cultured in glucose-free medium (Gibco,
Life Technologies, Paris, France) supplemented with 10% FBS,
1% P/S, 15mM HEPES, and 5.5 or 16.7mM glucose with and
without PUGNAc (100µM). Pellets were harvested for RNA
and protein analysis. Total RNA was extracted using the RNeasy
Mini Kit (Qiagen, Courtabœuf, France) (19).

Quantitative Real-Time PCR
Total RNA was extracted using RNeasy micro Kit (Qiagen R©)
for rodent islets and RNeasy Kit (Promega R©) for INS1 832/13
cells. cDNA was reversed transcribed. The levels of expression
of each gene were normalized to cyclophylin expression
(INS1832/13 and rat islets) and β-actin and cyclophylin
(human islets).

Western Blotting Analysis
Proteins from rodent and human islets and cell lines were
subjected to 10% SDS-PAGE and transferred to nitrocellulose
membranes. Rabbit polyclonal NLRP3 (Cell signaling), OGT
(Sigma), cleaved IL1β (Cell Signaling) and monoclonal TxNIP
(MBL) antibodies were used. O-GlcNAc was detected using
RL2 anti-OGlcNAc antibody (Abcam). HSP90 (Cell Signaling),
GAPDH (Cell Signaling), and β-actin were used to normalize
data as indicated on Figure legends.

Immunoprecipitation and Wheat Germ
Agglutinin Purification
For TxNIP immunoprecipitation, cells were lysed on IPH buffer
(20 mmol/L Tris/HCl, 150 mmol/L NaCl, 0.5% NP-40 [v/v],
and protease inhibitors). Proteins were incubated with 2 µg
of anti-TxNIP antibody (MBL) and placed at 4◦C overnight.

Bound proteins were recovered after addition of 30 µl of
Sepharose-labeled protein G (Sigma) for 1 h at 4◦C. Beads
were gently centrifuged for 1min and washed four times for
5min each. Bound proteins were analyzed by Western blot
with a polyclonal anti-Flag (Sigma) or NRLP3 (Cell signaling)
antibodies. For wheat germ agglutinin ([WGA] a GlcNAc-
binding lectin) precipitation, 1mg of proteins was incubated
with 30 µl of WGA agarose beads (Sigma). Then, proteins
were eluted from the beads in a Laemmli buffer and separated
by SDS-PAGE.

RESULTS

TxNIP Expression and O-GlcNAcylation
Are Increased in Pancreas and Islets of
Rodent Models of Type 2 Diabetes
We first evaluated TxNIP expression and O-GlcNAcylation in
islets of GK rats, a diabetic but non-obese rat model with
moderate hyperglycemia but severe β cell defect (20) (Figure 1).
We confirmed that GK rats were hyperglycemic (Figure 1A) and
showed that txnip mRNA expression was markedly increased
(8-fold) (Figure 1B), while no significant modification in either
Ogt or Oga expression was observed (Figure 1C). In control
islets, TxNIP protein was barely detectable, neither in cell lysates
nor on WGA eluates (Figure 1B). In contrast, TxNIP protein
could be detected in cell lysates from GK islets. Recovery of
TxNIP on WGA beads (Figure 1C) suggested that TxNIP was
O-GlcNAcylated in rat GK islets.

We next examined TxNIP protein content and O-
GlcNAcylation of TxNIP (TxNIP O-GlcNAc) in pancreas
from db/db mice. Blood glucose measurement confirmed
the marked hyperglycemia of db/db mice vs. C57BL/6J mice
(Figure 1D). Although total TxNIP protein content was
unchanged in pancreas from db/db mice, the amount of TxNIP
immunoprecipitated on WGA beads was higher in db/db mice
than in control C57BL/6J mice. Densitometric analysis of the
signals revealed a 3-fold increase in the TxNIP O-GlcNAc/TxNIP
ratio (Figure 1E). Taken together, our data suggest that TxNIP is
O-GlcNAcylated in pancreas of diabetic rodents.

O-GlcNAcylation of TxNIP Depends on
OGT Activity
To characterize the role of OGT in the regulation of TxNIP
O-GlcNAcylation, the enzyme was silenced through a shRNA
approach in INS1 832/13 cells (Figures 2A,B). We first
verified the efficiency of the shRNA to knock down OGT
expression and global protein O-GlcNAcylation in these cells.
As shown in Figure 2A, OGT silencing under high glucose
concentrations (20mM) led to a decrease in O-GlcNAcylated
proteins levels compared to shcontrol conditions. We then
examined, under shOGT conditions, TxNIP O-GlcNAcylation
by WGA precipitation. We observed that TxNIP recovery on
WGA beads was markedly reduced compared to shcontrol
conditions. However, total TxNIP protein content was also
reduced when OGT was silenced (Figure 2B). Therefore, to
evaluate TxNIP O-GlcNAcylation independently of any change
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FIGURE 1 | O-GlcNAcylation of TxNIP is increased in rodent models of diabetes. (A) Blood glucose concentrations were measured in fed condition in wister and GK

rats. (B) Txnip, Ogt, and Oga mRNA levels in islets of wistar and GK rats. Significance is based on Mann-Whitney test. **p < 0.01. n = 3–5. (C) TxNIP

O-GlcNAcylation level evaluated by WGA binding experiments. Islet lysate proteins were immunoblotted with TxNIP and HSP90 was used as a loading control. (D)

Blood glucose concentrations were measured in C57/B6J and db/db mice. Significance is based on Mann-Whitney test. ***p < 0.001 (E) TxNIP O-GlcNAcylation was

evaluated by WGA binding experiments. Whole pancreas proteins were immunoblotted with a TxNIP antibody and β-actin was used as a loading control.

Quantification of the ratio of O-GlcNAcylated TxNIP corrected to total TxNIP protein is shown. Significance is based on student’s T-test followed by Welch correction

post-hoc test. *p < 0.05. n = 4.
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in TxNIP expression, we transfected HEK293 cells with a TxNIP
expression plasmid together with an OGT or OGA plasmid
(Figure 2C). TxNIP was then immunoprecipitated and its O-
GlcNAcylation level was evaluated using an anti-O-GlcNAc
antibody in HEK293 cells cultured under low (5mM) or
high (25mM) glucose concentrations, or under low glucose
supplemented with glucosamine (Gln, 5mM) and PUGNAc
(an inhibitor of OGA activity). We observed that TxNIP O-
GlcNAcylation increased in response to 25mM glucose and was
reduced when OGA was overexpressed. Moreover, TxNIP O-
GlcNAcmarkedly increased whenOGTwas overexpressed under
5mM glucose. Altogether, these results show that TxNIP is O-
GlcNAcylated in response to high glucose concentrations and
that this modification depends on OGT activity.

Increased TxNIP O-GlcNAcylation
Promotes Inflammasome Activation in
Human and Rat Islets
To better understand the regulation of TxNIP by O-
GlcNAcylation, we performed a series of experiments ex
vivo in response to glucose with or without PUGNAc (Figure 3).
The regulation of TxNIP by O-GlcNAcylation was examined
in isolated rat islets cultured in 2.8mM glucose, 16.7mM
glucose, or 16.7mM glucose supplemented with PUGNAc
(Figures 3A,B). As previously reported in other cell types
(21, 22), treatment of rat islets with the OGA inhibitor PUGNAc
increased Oga and decreased Ogt mRNA levels (Figure 3A).
Txnip mRNA expression, protein levels and O-GlcNAcylation
were significantly induced in response to elevated glucose
concentrations (a 5-fold increase when comparing 2.8–
16.7mM glucose concentrations) and was further increased
(a 2-fold increase) when PUGNAc was present (Figure 3A).
Using a luciferase reporter gene under the control of Txnip
promoter (containing the two tandem ChoRE), we confirmed
transcriptional regulation by glucose in pancreatic beta cells
(Supplementary Figure 1). Indeed, in INS1 832/13 cells, high
glucose concentration (20mM) stimulated by about 30-fold
Txnip promoter activity compared to low glucose concentrations
(5mM). Interestingly, Txnip promoter activity was reduced
by 50% when INS1 832/13 cells were cultivated under high
glucose concentrations and infected by the OGA adenovirus
(Supplementary Figure 1).

A marked increase in TxNIP total protein content was
also observed in rat islets cultured in presence of 16.7mM
when compared to 2.8mM glucose, and a further increase in
total TxNIP protein content could be detected in presence
of PUGNAc. O-GlcNAcylated forms of TxNIP were enhanced
and paralleled with global O-GlcNAcylation of proteins under
glucose conditions with or without PUGNAc (Figure 3B).

We also cultured human islets for 48 h in glucose 5.5, 16.7,
or 16.7mM supplemented with PUGNAc and analyzed for
expression and O-GlcNAcylation of TxNIP (Figures 3C,D). We
observed a 4-fold induction of TxNIP expression in response
to elevated glucose concentrations (16.7mM). Adding PUGNAc
to high glucose concentration did not further increase TxNIP
expression. OGA expression was upregulated in human islets

cultured under high glucose concentrations and PUGNAc
whereas no difference in OGT expression was observed
(Figure 3C). In agreement with TxNIP mRNA expression,
TxNIP protein content was increased with 16.7mM glucose and
adding PUGNAc did not modify total TxNIP protein content
but increased its O-GlcNAcylated form as well as global O-
GlcNAcylation levels (Figure 3D). Since a link between TxNIP
and the inflammasome was previously evidenced (23), we
measured cleaved IL1β under glucose ± PUGNAc conditions.
Human islets cultured with 16.7mM glucose exhibited a 1.6-
fold increase in cleaved IL1β and supplementation of the culture
medium with PUGNAc led to a further 2.9-fold increase,
suggesting potentiation of inflammasome activation (Figure 3D).
Similarly to human islets, a significant increase in cleaved IL1β
was observed in response to 16.7mM glucose and PUGNAC
conditions in rat islets (Figure 3B).

TxNIP O-GlcNAcylation Modifies Its
Scaffold Function With NLRP3
TxNIP functions as a scaffold protein and interacts with
different partners to inhibit or activate their biological activities
(24). Therefore, we next addressed whether O-GlcNAcylation
of TxNIP could affect IL1β cleavage through its interaction
with NLRP3. Experiments were performed in both HEK293
and INS1 832/13 cells (Figure 4). HEK293 cells were co-
transfected with a TxNIP expression vector and a NLRP3
expression vector tagged with a FLAG epitope (NLRP3-
FLAG). Immunoprecipitation of cell lysates with a TxNIP
antibody and immunoblotting with anti-Flag antibody revealed
that TxNIP co-immunoprecipitated with NLRP3 (Figure 4A).
A 2-fold increase in the interaction between TxNIP and
NLRP3 was observed under high glucose (25mM) compared
to low glucose concentrations (5mM) (Figures 4A,B). OGT
overexpression under low glucose concentrations induced a
level of interaction similar to that obtained under high
glucose conditions alone (Figures 4A,B). Inhibition of O-
GlcNAcylation via OGA overexpression significantly decreased
the interaction between the two partners. Finally, stimulation of
O-GlcNAcylation with glucosamine (Gln) and PUGNAc led to a
greater interaction between TxNIP and NLRP3 (Figures 4A,B).

Interaction between endogenous TxNIP and NLRP3
proteins was also evidenced in INS1 832/13 cells upon
immunoprecipitation with anti-TxNIP antibody and
immunobloting with anti-NLRP3 antibody (Figure 4C).
Under high glucose concentrations (20mM), the interaction
between TxNIP and NLRP3 was increased compared to low
glucose concentration (2.5mM). Finally, we used a BRET
approach in INS1 832/13 cells to address the importance of
the O-GlcNAcylation modification for the activation of the
inflammasome pathway. INS1 832/13 cells were transfected with
a plasmid coding a BRET biosensor comprising the pro-Il1β
sequence flanked by a Luciferase and an YFP (14). Cleavage of
the pro-Il1β results in a decreased in BRET signal (Figure 4D).
A significant decrease in BRET signal was observed when INS1
832/13 cells were cultured under 11mM glucose with PUGNAc
(Figure 4D), similar to that obtainedwith 25mMglucose. Higher
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FIGURE 2 | TxNIP O-GlcNAcylation is dependent on OGT. (A,B) INS1 832/13 cells were infected by a shControl or shOGT adenovirus for 24 h. INS1 832/13 cells

were later stimulated for 24 h under low glucose (2.5mM) or high glucose (20mM) concentrations. (A) Global O-GlcNAcylation levels and OGT protein content.

GAPDH was used as a loading control. (B) TxNIP O-GlcNAcylation was evaluated by WGA binding experiments. Protein lysates from INS1 832/13 cells were

immunoblotted with TxNIP and GAPDH was used as a loading control. (C) HEK293 cells were co-transfected with TxNIP, OGT, and OGA plasmids and incubated for

24 h under low (5mM) or high glucose conditions (25mM) supplemented or not by PUGNAc and glucosamine (Gln). O-GlcNAcylation level of TxNIP was evaluated

using an anti-O-GlcNAc antibody (RL2). Immunoprecipitation (IP) of TxNIP was analyzed by immunoblotting with a Flag antibody. Representative Western blot from

n = 3 experiments for TxNIP protein content are shown. GAPDH was used as loading control.

glucose concentrations (33mM glucose) further decreased the
BRET signal. Of note, the effect of PUGNAc on BRET signal
was confirmed using Thiamet G, a more specific inhibitor of
O-GlcNAcase activity (Supplemental Figure 2). Altogether, our
results reveal that increased TxNIP O-GlcNAcylation correlates
with the induction of the inflammasome pathway.

DISCUSSION

The current study demonstrates that TxNIP protein is modified
by O-GlcNAcylation in pancreatic β-cells in an OGT dependent
manner. We report here that this posttranslational modification,
dependent on high glucose concentrations, increases the
interaction of TxNIP with its partner NLRP3, correlating with
enhanced cleavage of the interleukin IL1β in both rodent and
human cells.

Over the past years, TxNIP has emerged as a central regulator
of β-cell function. TxNIP is one of the most up-regulated gene in
response to glucose in human islets and INS1 cells (2, 9, 25). We
confirmed that Txnip promoter activity is markedly increased in
response to glucose in INS1 cells, an effect previously reported

to be ChREBP dependent (25). Overexpression of TxNIP in
INS1 cells is associated with increased apoptosis (3, 26) while β-
cell specific TxNIP inhibition protects against β cell dysfunction
under high glucose concentrations by increasing β cell mass
and stimulating the cellular survival pathway Akt/Bcl-xl. TxNIP
is also implicated in the production of insulin by regulating
miR-204 expression which in turn targets the transcription
factor MafA that binds to the promoter in the insulin gene
(27). While the regulation of TxNIP was essentially described
at the transcriptional level, in particular by the transcription
factors ChREBP and FoxO1 in pancreatic β cells (9), post-
translational regulation of the TxNIP protein by phosphorylation
was described in adipocytes and myotubes in response to insulin
(28). Interestingly, in these cells, phosphorylation of TxNIP by
AMPK or AKT leads to its dissociation from glucose transporters
and to its degradation thereby enhancing glucose uptake (29, 30).

While experiments from Ayer’s laboratory previously showed
the importance of the hexosamine biosynthetic pathway for the
regulation of TxNIP (31), a regulation of TxNIP protein by
O-GlcNAcylation had never been described to our knowledge.
In the present work, we provide several lines of evidence in
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FIGURE 3 | Increasing O-GlcNAcylation in rat and human islets promotes inflammasome activation. (A,B) Islets isolated from Wistar rat were incubated for 72 h under

low glucose (2.8mM), high glucose (16.7mM), or high glucose plus PUGNAc (16.7mM + PUGNAc) (A) Q-PCR analysis of OGT, OGA, and TxNIP. Data are means ±

SEM of eight independent experiments. Significance is based on two-way ANOVA followed by a Bonferroni post-hoc test *p < 0.05, **p < 0.01, ***p < 0.001. (B)

Global O-GlcNAcylation levels and TxNIP protein content. TxNIP O-GlcNAcylation was evaluated by WGA binding experiments. Representative Western blot for

cleaved Il1β protein content is shown. HSP90 was used as a loading control. (C,D) Human islets were incubated for 72 h under low glucose (5.5mM), high glucose

(16.7mM), or high glucose plus PUGNAc (16.7mM + PUGNAc) (C) QPCR analysis of TxNIP, OGT, and OGA mRNA expression. Data are means ± SEM. n = 3

independent experiments. Significance is based on two-way ANOVA followed by a Bonferroni post-hoc test **p < 0.01. (D) Global O-GlcNAcylation levels, TxNIP

protein content, and O-GlcNAcylation of TxNIP evaluated by WGA binding experiments. β-actin was used as a loading control. Representative Western Blot of

Cleaved Il1β and HSP90 are also shown. Data are means ± SEM. n = 3 independent cultures. Significance is based on two-way ANOVA followed by a Bonferroni

post-hoc test **p < 0.01, ***p < 0.001.
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FIGURE 4 | O-GlcNAcylation promotes TxNIP interaction with NLRP3 and pro-Il1β cleavage. (A) HEK293 cells were co-transfected with TxNIP, NLRP3-flag, OGT,

and OGA plasmids and incubated for 24 h under low glucose condition (5mM), high glucose condition (25mM), or low glucose condition supplemented with PUGNAc

and glucosamine (Gln). Immunoprecipitation (IP) of TxNIP was analyzed by immunoblotting with a Flag antibody. Representative Western blot for NLRP3, TxNIP, OGA,

and OGT protein content are shown n = 4–7 independent experiments. GAPDH was used as loading control. (B) Quantification of the interaction between TxNIP and

NLRP3 normalized to total TxNIP protein. Significance is based on two-way ANOVA followed by a Bonferroni post-hoc test. *p < 0.05, ***p < 0.001 when compared

to 5mM glucose; #p < 0.05 when compared to 25mM glucose. (C) INS1 832/13 cells were stimulated for 24 h under low glucose (2.5mM) or high glucose (20mM)

concentrations supplemented with PUGNAc. Immunoprecipitation (IP) of TxNIP was analyzed by immunoblotting with a NLRP3 antibody. Representative Western blot

for NLRP3 and TxNIP protein content are shown. GAPDH was used as loading control (n = 4–7 independent experiments). (D) INS1 832/13 cells were

transfected with a BRET-based biosensor that monitors pro-Il1β cleavage. The histogram shows the decreased in BRET signal measured in INS1 832/13 cells after

24 h of incubation with PUGNAc or with 25mM or 33mM of glucose. Significance is based on two-way ANOVA followed by a Dunnett’s test for BRET experiments. *p

< 0.05, ***p < 0.001 (n = 4–14).

favor of TxNIP O-GlcNAcyaltion. It is important to note that
although binding of a protein to WGA does not necessarily
prove that this protein is O-GlcNAcylated, the experiments we
performed in HEK cells in which a transfected Flag-TxNIP

was immunprecipitated and probed with an anti-O-GlcNAc
antibody, strongly supports the fact that the TxNIP protein
is indeed modified by O-GlcNAcylation. Similar experiments
with the endogenous TxNIP in pancreatic β-cells, were
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problematic given that TxNIP expression was also increased
upon induction of O-GlcNAcylation in beta cell, thereby limiting
clear interpretation. O-GlcNAcylation, which involves the
addition of a single O-GlcNAc to serine and threonine residues of
proteins acts as a nutrient sensor. A couple of enzymes is involved
in the regulation of the pathway: OGT, the enzyme which
transfers the mono- saccharide to serine/threonine residues on
target proteins, and OGA, which hydrolyses the sugar. Several
studies have established that inhibition of OGA activity and
subsequent increase in O-GlcNAcylation result in an enhanced
OGA mRNA and protein expression (22, 32–34), probably as
an adaptive mechanism to maintain O-GlcNAc homeostasis
in the cell. In agreement with this notion, several lines of
evidence indicated that in patients with diabetes, increased
O-GlcNAcylation associated with chronic hyperglycaemia was
also associated with an increased expression of OGA (35, 36).
Interestingly, in a recent study (37) OGA mRNA levels in
leucocytes from patients with type 2 diabetes were significantly
correlated with TxNIP mRNA levels, as well as with blood
markers of hyperglycaemia (HbA1C, Fructosamine). We report
here that OGA mRNA levels are increased in response to
enhanced O-GlcNAcylation pathway in both human and rat
islets. The regulation of OGT by O-GlcNAc homeostasis is less
clear. In rat islets, we observed that OGT expression is negatively
regulated in response to high glucose concentrations and that
this inhibition is stronger when the OGA enzyme is blocked
by PUGNAc. Interestingly, OGT expression was not modified
by the different treatments in human islets suggesting a species
dependent regulation.

Several transcription factors are regulated by O-
GlcNAcylation in pancreatic β cells (11). For example,
O-GlcNAcylation of FoxO1 in INS1 cells results in a 2-fold
increase in its transcriptional activity and a 3-fold increase
in the expression of the insulin-like growth factor-binding
protein 1 (Igfbp1) gene at the mRNA level, resulting in IGFBP1
protein hypersecretion by INS1 cells. In turn, increased
IGFBP1 production in the culture medium blunts the Akt
transduction pathway, revealing a novel mechanism by which
O-GlcNAcylation inhibits Akt activity in INS1 cells through
an autocrine mechanism (38). Of note, O-GlcNAcylation
not only regulates transcriptional activity but has also been
shown to influence protein-protein interactions (39, 40). In
the current study, we revealed a novel mechanism by which
O-GlcNAcylation of TxNIP favors its interaction with its partner
NLRP3. NLRP3 is an inflammasome protein that once activated
leads to the processing of IL1β, a cytokine involved in the
pathology of type 2 diabetes (41). By performing both Western
blot and BRET analysis, we demonstrated that production of
IL1β by pancreatic cells could be induced by both glucose and
PUGNAc. Therefore, increased TxNIP O-GlcNAcylation in
pancreatic islets could play a part in diabetes pathogenesis. In
the current study, two rodent models of diabetes (GK rats and
db/db mice) suggested O-GlcNAcylation of TxNIP in pancreatic
cells. Of note, TxNIP expression level was increased in isolated
islets from GK rats while no difference was observed in the db/db
mouse model. The difference could be explained by the fact that
we had access to isolated islets for GK rats but not for db/dbmice.

FIGURE 5 | Implication of hexosamine biosynthetic pathway on the NLRP3

inflammasome. A fraction of glucose flux is metabolized by the hexosamine

biosynthetic pathway to synthesize UDP-GlcNAc. OGT uses UDP-GlcNAc to

O-GlcNAcylate TxNIP. This modification increases TxNIP-NLRP3 interaction.

The formation of the TxNIP-NLRP3-ASC oligomer complex activates Caspase

1. Once activated, Caspase 1 cleaves the inactive form pro-IL1β to the

biologically active form IL1β.

In conclusion, our study reveals that O-GlcNAcylation
represents an important regulatory mechanism for TxNIP
activity in β cells by increasing its interaction with NLRP3
and the subsequent stimulation of IL1β production (Figure 5).
Additional studies will be required to identify TxNIP O-
GlcNAcylation sites, and to establish the specific contribution of
TxNIP O-GlcNAcylation to pancreatic glucotoxicity in diabetes.
Overall, strategies to inhibit this novel regulatory node in
pancreatic β cells could be of interest to limit inflammation in
the context of hyperglycemia.
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activity of the Txnip promoter was measured. Figure is presented as means ±

SEM from 3 to 4 independent cultures. Significance is based on two-way ANOVA

followed by a Bonferroni post-hoc test. ∗∗p < 0.01 when compared to GFP

conditions, ∗∗∗p < 0.005 when compared to 5mM glucose condition (GFP), $$p

< 0.01 when compared to 20mM glucose condition (GFP).

Supplemental Figure 2 | INS1 832/13 cells were transfected with a BRET-based

biosensor that monitors pro-Il1β cleavage. The histogram shows the decreased in

BRET signal measured in INS1 832/13 cells after 24 h of incubation with PUGNAc

(100µM) or with ThiametG (10µM). Significance is based on two-way ANOVA

followed by a Dunnett’s test for BRET experiments. ∗∗p < 0.01 (n = 4).
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