40 research outputs found

    Asymmetry of 13C labeled 3-pyruvate affords improved site specific labeling of RNA for NMR spectroscopy

    Get PDF
    Selective isotopic labeling provides an unparalleled window within which to study the structure and dynamics of RNAs by high resolution NMR spectroscopy. Unlike commonly used carbon sources, the asymmetry of 13C-labeled pyruvate provides selective labeling in both the ribose and base moieties of nucleotides using E. coli variants, that until now were not feasible. Here we show that an E. coli mutant strain that lacks succinate and malate dehydrogenases (DL323) and grown on [3-13C]-pyruvate affords ribonucleotides with site specific labeling at C5′ (~95%) and C1′ (~42%) and minimal enrichment elsewhere in the ribose ring. Enrichment is also achieved at purine C2 and C8 (~95%) and pyrimidine C5 (~100%) positions with minimal labeling at pyrimidine C6 and purine C5 positions. These labeling patterns contrast with those obtained with DL323 E. coli grown on [1, 3-13C]-glycerol for which the ribose ring is labeled in all but the C4′ carbon position, leading to multiplet splitting of the C1′, C2′ and C3′ carbon atoms. The usefulness of these labeling patterns is demonstrated with a 27-nt RNA fragment derived from the 30S ribosomal subunit. Removal of the strong magnetic coupling within the ribose and base leads to increased sensitivity, substantial simplification of NMR spectra, and more precise and accurate dynamic parameters derived from NMR relaxation measurements. Thus these new labels offer valuable probes for characterizing the structure and dynamics of RNA that were previously limited by the constraint of uniformly labeled nucleotides

    Biomass production of site selective 13C/15N nucleotides using wild type and a transketolase E. coli mutant for labeling RNA for high resolution NMR

    Get PDF
    Characterization of the structure and dynamics of nucleic acids by NMR benefits significantly from position specifically labeled nucleotides. Here an E. coli strain deficient in the transketolase gene (tktA) and grown on glucose that is labeled at different carbon sites is shown to facilitate cost-effective and large scale production of useful nucleotides. These nucleotides are site specifically labeled in C1′ and C5′ with minimal scrambling within the ribose ring. To demonstrate the utility of this labeling approach, the new site-specific labeled and the uniformly labeled nucleotides were used to synthesize a 36-nt RNA containing the catalytically essential domain 5 (D5) of the brown algae group II intron self-splicing ribozyme. The D5 RNA was used in binding and relaxation studies probed by NMR spectroscopy. Key nucleotides in the D5 RNA that are implicated in binding Mg2+ ions are well resolved. As a result, spectra obtained using selectively labeled nucleotides have higher signal-to-noise ratio compared to those obtained using uniformly labeled nucleotides. Thus, compared to the uniformly 13C/15N-labeled nucleotides, these specifically labeled nucleotides eliminate the extensive 13C–13C coupling within the nitrogenous base and ribose ring, give rise to less crowded and more resolved NMR spectra, and accurate relaxation rates without the need for constant-time or band-selective decoupled NMR experiments. These position selective labeled nucleotides should, therefore, find wide use in NMR analysis of biologically interesting RNA molecules

    Vers des gels conducteurs calibrés et régioréguliers de poly(octyl-3-thiophène) : préparation du motif élémentaire

    No full text
    Dans le but d'étudier la corrélation propriétés de transport-connecti vité dans des réseaux conducteurs, nous nous proposons de préparer des gels entièrement conjugués parfaitement définis. Notre équipe a déjà obtenu quatre séries de gels statistiques de poly(octylthiophène). Nous voulons maintenant préparer des réseaux homologues dont la longueur et la régiorégularité des bras espaceurs seront contrôlées. Les bras espaceurs de ces gels seront constitués de n (n ≥ 1) sexi(octyl-3-thiophène). La préparation régiosélective du sexithiophène a été optimisée; nous avons approfondi sa caractérisation ainsi que celle des oligomères intermédiaires. Le sexithiophène régiorégulier a été couplé en position 1, 3, 5 d'un cycle benzénique. La molécule ainsi obtenue constitue le motif élémentaire des gels que nous souhaitons préparer

    Light-induced degradation of the active layer of polymer-based solar cells

    No full text
    International audiencePolymer-based organic solar cells are known to offer a poor stability in real use conditions, and the photodegradation of the active organic layer plays an important role in the reduced lifetime of the devices. This paper focuses on the photodegradation of two conjugated polymers used in organic solar cells, namely poly(2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylenevinyl ene (MDMO-PPV) and poly(3-hexyylthiophene) (P3HT), and their blends with [60]PCBM (methano-fullerene[6,6]-phenyl C61-butyric acid methyl ester), a fullerene derivative. MDMO-PPV and P3HT thin films were submitted to photoageing (λ > 300 nm) in the presence and in the absence of oxygen. The mechanisms by which these polymers degrade were elucidated. P3HT, pristine and blended with PCBM, was shown to be much more stable under illumination than MDMO-PPV. The results showed that, if deposited on an inert substrate and well protected from oxygen with a convenient encapsulation, P3HT:PCBM based active layer should be intrinsically stable for several years in use conditions

    High efficient plastic solar cells fabricated with a high-throughput gravure printing method

    No full text
    We report on polymer-based solar cells prepared by the high-throughput roll-to-roll gravure printing method. The engravings of the printing plate, along with process parameters like printing speed and ink properties, are studied to optimise the printability of the photoactive as well as the hole transport layer. For the hole transport layer, the focus is on testing different formulations to produce thorough wetting of the indium-tin-oxide (ITO) substrate. The challenge for the photoactive layer is to form a uniform layer with optimal nanomorphology in the poly-3-hexylthiophene (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend. This results in a power conversion efficiency of 2.8% under simulated AM1.5G solar illumination for a solar cell device with gravure-printed hole transport and a photoactive layer. (C) 2010 Elsevier B.V. All rights reserved
    corecore