2 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Approaches of learning and computational thinking in students that get into the computer sciences career

    No full text
    Abstract: The way in which the student processes the information, codifies it and recovers it, constitutes its learning approach. The learning process differentiates two qualitative ways of dealing with this process: the deep approach and the superficial approach. The use of each approach depends on the context. However, the adoption of a deep learning approach is positively related to the academic performance. Computational Thinking is defined as a competence of the XXI century, which allows solving problems from a computational point of view, and there is a variety of instruments that allow to measure it, and to know the state in which the evaluated student is. In this paper, we verified the existence of the positive significant relationship between the learning approach and computational thinking in students entering the career of Computer Sciences. By applying Pearson correlation test to verify the relationship between Learning Approaches and Computational Thinking, we found that both variables have homogeneous behaviors and that students show similar conditions. Men are in better conditions than women on the evaluated aspects of the Computational Thinking, Also, we found a significantly positive relationship between Computational Thinking and the Learning Approach (r = 0,882). This result shows that the learning approaches that students practice are linked to the computational thinking they demonstrate. According to the results, the teachers of this career must develop active and deep methodological strategies due to the predisposition in these students
    corecore