203 research outputs found
Huge linear magnetoresistance due to open orbits in -PtBi
Some single-crystalline materials present an electrical resistivity which
decreases between room temperature and low temperatures at zero magnetic field
as in a good metal and switches to a nearly semiconductinglike behavior at low
temperatures with the application of a magnetic field. Often, this is
accompanied by a huge and nonsaturating linear magnetoresistance which remains
difficult to explain. Here we present a systematic study of the
magnetoresistance in single-crystal -PtBi. We observe that the
angle between the magnetic field and the crystalline axis fundamentally
changes the magnetoresistance, going from a saturating to a nonsaturating
magnetic field dependence. In between, there is one specific angle where the
magnetoresistance is perfectly linear with the magnetic field. We show that the
linear dependence of the nonsaturating magnetoresistance is due to the
formation of open orbits in the Fermi surface of -PtBi.Comment: 12 pages, 8 figures including Supplementary Materia
Analysis of Four Polymorphisms Located at the Promoter of the Estrogen Receptor Alpha ESR1 Gene in a Population With Gender Incongruence
[Abstract] Introduction: Gender incongruence defines a state in which individuals feel discrepancy between the sex assigned at birth and their gender. Some of these people make a social transition from male to female (transwomen) or from female to male (trans men). By contrast, the word cisgender describes a person whose gender identity is consistent with their sex assigned at birth.
Aim: To analyze the implication of the estrogen receptor a gene (ESR1) in the genetic basis of gender incongruence.
Main Outcome Measures: Polymorphisms rs9478245, rs3138774, rs2234693, rs9340799.
Method: We carried out the analysis of 4 polymorphisms located at the promoter of the ESR1 gene (C1 ¼ rs9478245, C2 ¼ rs3138774, C3 ¼ rs2234693, and C4 ¼ rs9340799) in a population of 273 trans
women, 226 trans men, and 537 cis gender controls. For SNP polymorphisms, the allele and genotype frequencies were analyzed by c2 test. The strength of the SNP associations with gender incongruence was measured by binary logistic regression. For the STR polymorphism, the mean number of repeats were analyzed by the ManneWhitney U test. Measurement of linkage disequilibrium and haplotype frequencies were also performed.
Results: The C2 median repeats were shorter in the trans men population. Genotypes S/S and S/L for the C2 polymorphism were overrepresented in the trans men group (P ¼ .012 and P ¼ .003 respectively). We also found overtransmission of the A/A genotype (C4) in the trans men population (P ¼ .017), while the A/G genotype (C4) was subrepresented (P ¼ .009]. The analyzed polymorphisms were in linkage disequilibrium. In the trans men population, the T(C1)-L(C2)-C(C3)-A(C4) haplotype was overrepresented (P ¼ .019) while the T(C1)-L(C2)-C(C3)-G(C4) was subrepresented (P ¼ .005).
Conclusion: The ESR1 is associated with gender incongruence in the trans men populationThis work was supported by grants: ED431B 019/02 (EP), PGC2018-094919-B-C21 (AG), PGC2018-094919-B-C22 (RF), and FPU 15/02558 (JCC)Xunta de Galicia; ED431B 019/0
Andreev reflection under high magnetic fields in ferromagnet-superconductor nanocontacts
We study the magnetic-field dependence of the conductance in planar ferromagnet-superconductor nanocontacts created with focused-electron/ion-beam techniques. From the fits of the differential conductance curves in high magnetic fields, we obtain the magnetic field dependences of the superconducting gap and the broadening parameter. Orbital depairing is found to be linear with magnetic field. We evaluate the magnetic field dependence of the quasiparticle density of states, and we compare it with the value obtained by scanning tunneling spectroscopy experimentsThis work was supported by the Spanish Ministry of Science (through projects MAT2008-06567-C02, including FEDER funding) and the Arag´on Regional Government (project E26). S. Sangiao acknowledges financial support from Spanish ME
Orden y desorden en superconductividad
Tesis doctoral inédita. Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Física de la Materia Condensada. Fecha de lectura: 19-06-0
Long-range vortex transfer in superconducting nanowires
Under high-enough values of perpendicularly-applied magnetic field and current, a type-II superconductor presents a finite resistance caused by the vortex motion driven by the Lorentz force. To recover the dissipation-free conduction state, strategies for minimizing vortex motion have been intensely studied in the last decades. However, the non-local vortex motion, arising in areas depleted of current, has been scarcely investigated despite its potential application for logic devices. Here, we propose a route to transfer vortices carried by non-local motion through long distances (up to 10 micrometers) in 50 nm-wide superconducting WC nanowires grown by Ga+ Focused Ion Beam Induced Deposition. A giant non-local electrical resistance of 36 Ω has been measured at 2 K in 3 μm-long nanowires, which is 40 times higher than signals reported for wider wires of other superconductors. This giant effect is accounted for by the existence of a strong edge confinement potential that hampers transversal vortex displacements, allowing the long-range coherent displacement of a single vortex row along the superconducting channel. Experimental results are in good agreement with numerical simulations of vortex dynamics based on the time-dependent Ginzburg-Landau equations. Our results pave the way for future developments on information technologies built upon single vortex manipulation in nano-superconductorsThis work was supported by the financial support from Spanish Ministry of Economy and Competitiveness through the projects MAT2015-69725-REDT, MAT2017-82970-C2-1-R and MAT2017-82970-C2-2-R, PIE201760E027, including FEDER funding, FIS2017-84330-R, MDM-2014-0377, FIS2016-80434-P and the Fundación Ramón Areces, EU ERC (Grant Agreement No. 679080), COST Grant No. CA16128 and STSM Grant from COST Action CA16218, and from regional Gobierno de Aragón (grants E13_17R and E28_17R) with European Social Fund (Construyendo Europa desde Aragón) and Comunidad de Madrid through project Nanofrontmag-CM (Grant No. S2013/MIT-2850
Three axis vector magnet set-up for cryogenic scanning probe microscopy
We describe a three axis vector magnet system for cryogenic scanning probe microscopy measurements. We discuss the magnet support system and the power supply, consisting of a compact three way 100 A current source. We obtain tilted magnetic fields in all directions with maximum value of 5T along z-axis and of 1.2T for XY-plane magnetic fields. We describe a scanning tunneling microscopy-spectroscopy (STM-STS) set-up, operating in a dilution refrigerator, which includes a new high voltage ultralow noise piezodrive electronics and discuss the noise level due to vibrations. STM images and STS maps show atomic resolution and the tilted vortex lattice at 150 mK in the superconductor β-Bi2Pd. We observe a strongly elongated hexagonal lattice, which corresponds to the projection of the tilted hexagonal vortex lattice on the surface. We also discuss Magnetic Force Microscopy images in a variable temperature insertThis work was supported by Convocatoria Doctorados en el Exterior 568-2012 COLCIENCIAS, the Spanish MINECO (FIS2011-23488, MAT2011-27470-C02-02, CSD2009-00013), by the Comunidad de Madrid through program Nanofrontmag-CM (S2013/MIT-2850) and by Marie-Curie actions under the project FP7-PEOPLE-2013- CIG-618321. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement No. 604391 Graphene Flagship. We also acknowledge Banco Santander, COST MP1201. J.A. and C.M. acknowledge the FPI (BES- 2012-058600) and Juan de la Cierva (JCI-2011-08815) programs, respectivel
Charge density wave in layered La1-xCexSb2
The layered rare-earth diantimonides RSb2 are anisotropic metals with generally low electronic densities whose properties can be modified by substituting the rare earth. LaSb2 is a nonmagnetic metal with a low residual resistivity presenting a low-temperature magnetoresistance that does not saturate with the magnetic field. It has been proposed that the latter can be associated to a charge density wave (CDW), but no CDW has yet been found. Here we find a kink in the resistivity above room temperature in LaSb2 (at 355 K) and show that the
kink becomes much more pronounced with substitution of La by Ce along the La1−xCexSb2 series. We find signatures of a CDW in x-ray scattering, specific heat, and scanning tunneling microscopy (STM) experiments in particular for x ≈ 0.5. We observe a distortion of rare-earth–Sb bonds lying in-plane of the tetragonal crystal using x-ray scattering, an anomaly in the specific heat at the same temperature as the kink in resistivity and charge modulations in STM. We conclude that LaSb2 has a CDW which is stabilized in the La1−xCexSb2 series
due to substitutional disorderThis work was supported by the Spanish MINECO (FIS2014-54498-R, MAT2011-27470-C02-02, and CSD-2009-00013), by the European Union (Graphene Flagship Contract No. CNECT-ICT-604391 and
COST MP1201 action), and by the Comunidad de Madrid through programs Nanofrontmag-CM (S2013/MIT-2850) and
MAD2D-CM (S2013/MIT-3007).We acknowledge MINECO and CSIC for financial support and for provision of synchrotron radiation facilities and would like to thank the SpLine BM25 staff for assistance in using the beamlin
Low-Frequency Imaginary Impedance at the Superconducting Transition of 2H-NbSe2
The superconducting transition leads to a sharp resistance drop in a temperature interval that can be a small fraction of the critical temperature Tc. A superconductor exactly at Tc is thus very sensitive to all kinds of thermal perturbation, including the heat dissipated by the measurement current. We show that the interaction between electrical and thermal currents leads to a sizable imaginary impedance at frequencies of the order of tens of hertz at the resistive transition of single crystals of the layered material 2H-NbSe2.We explain the result using models developed for transition-edge sensors. By measuring under magnetic fields and at high currents, we find that the imaginary impedance is strongly influenced by the heat associated with vortex motion and out-of-equilibrium quasiparticles
Reducing Emissions in the Maritime Sector: Offshore Wind Energy as a Key Factor
The maritime environment is the setting for a variety of economic activities, such as offshore wind energy, aquaculture, salt extraction, and oil and gas platforms. While some of these activities have a long-term presence, others require decarbonization as they head towards their demise. In this context, the aim of this study is to develop a methodology to replace the electrical energy from offshore high-emission industrial processes with clean electricity generated by offshore wind energy. The proposal is structured in three phases: initiation, which involves the collection of quantitative, technical, and geospatial information of the study area; indicators, where the main indicators are calculated, and the best alternative is selected using multi-criteria evaluation methods; and finally, short-, medium-, and long-term scenarios are proposed. The methodology is evaluated in Spain, and the best alternative, which has a nominal power of 225 MW, is capable of avoiding up to 1.44 MtCO2 by 20502024-2
SMART: Selection Model for Assessment Resources and Techniques
The European Higher Education Area has ushered in a significant shift in university
teaching, aiming to engage students more actively in classes. Professors have leveraged virtual
platforms and external tools to introduce interactive tasks. With the proliferation of technology,
educators face a challenge in choosing the most suitable approach. This paper presents SMART
(Selection Model for Assessment Resources and Techniques), a methodology that determines the
optimal assessment activities for university-level education. The methodology employs multicriteria
decision-making techniques, specifically AHP and TOPSIS methods, to optimize activities based on
various subject-, lecturer-, activity-, and student-related criteria. According to SMART, the top five
assessment tasks are group and individual report submissions, workshops, complex H5P activities,
and questionnaires. Therefore, it is advisable to prioritize these activities based on the methodology’s
results, emphasizing their importance over other assessment methods.2023-2
- …
