207 research outputs found
Influence of molecular design on the morphology of nanoparticles formed from 1-alkyl-6-alkoxy-quinolinium cations and 4-sulfonatocalix[n]arenes
In order to reveal the influence of the guest molecular structure, the interactions between 4-sulfonatocalix[n]arene (SCXn) cavitands (n = 4 or 6) and two series of quinolinium derivatives were studied in neutral aqueous solutions at 298 K. For this, the long alkyl chain of the quinoliniums was attached either to the heterocyclic nitrogen (CmC1OQ+ m = 10, 12, or 14) or to the oxygen located in position 6 of the aromatic system (C1CmOQ+ m = 8, 10, or 12). All the quinolinium derivatives self-assembled with SCXn into nanoparticles (NP), whose size, zeta potential and composition were determined over a large molar mixing ratio range. Isothermal titration calorimetry showed that host-guest binding assisted the formation of negatively charged NPs in exothermic processes. The enthalpy gain in these associations significantly increased with the lengthening of the 1-alkyl group but was insensitive to the size of the SCXn macrocycle. The morphology of NPs was studied by cryo-TEM method. CmC1OQ+ organization with SCXn led to spherical NPs without regular inner structure. In contrast, C1CmOQ+-SCXn nanoaggregates usually had various shapes and the original morphologies exhibited lamellar domains with ~3 nm layer thickness. The different orientation of CmC1OQ+ and C1CmOQ+ in the cavitand was proposed to rationalize the morphological alterations
4-Sulfonatocalixarene-induced nanoparticle formation of methylimidazolium-conjugated dextrans: Utilization for drug encapsulation
Methylimidazolium side groups were grafted via ether linkage to dextran and the self-assembly of these polymers with 4-sulfonato-calix[n]arenes (SCXn) was studied in aqueous solutions. Dynamic light scattering and zeta potential measurements revealed the mixing ratio ranges of the constituents where stable nanoparticles could be created. The macrocycle size of SCXn and the molecular mass of the polymer barely affected the nanoparticle diameter, but the lowering of the imidazolium degree of substitution substantially diminished the stability of the associates. The pH change from neutral to acidic also unfavourably influenced the self-organization owing mainly to the decrease of the SCXn charge. Cryogenic transmission electron microscopy images proved the spherical morphology of the nanoproducts in which the stoichiometry of the constituents was always close to the one corresponding to charge compensation. The flexible and positively charged dextran-chains are compacted by the polyanionic SCXn. Coralyne, a pharmacologically important alkaloid was efficiently embedded by self-assembly in the produced nanoparticles reaching 99% association efficiency. © 2019 Elsevier Lt
Effect of Macrocycle Size on the Self-Assembly of Methylimidazolium Surfactant with Sulfonatocalix[n]arenes
The effect of macrocycle size on the association of supramolecular amphiphiles composed of 4-sulfonatocalix[n]arene and 1-methyl-3-tetradecylimidazolium (C14mim+) was studied in aqueous solutions at pH 7. When the cavitand contained four sulfonatophenol units (SCX4), spherical nanoparticle (NP) formation was observed. In contrast, both supramolecular micelle (SM) and NP formation could be attained in the presence of NaCl when the larger, more flexible 4-sulfonatocalix[8]arene (SCX8) served as host compound. The SCX8-promoted self-assembly into SM was enthalpically more favorable than NP production but the molar heat capacity changes in the two processes barely differed. Addition of 50 mM NaCl significantly increased the enthalpy of C14mim+−SCX8 NP formation making thereby the self-organization into SM more favorable. The transformation of SM into NP at high temperature was due to the substantial entropic contribution to the driving force of NP formation. The critical micelle concentration and the local polarity in the headgroup domain were considerably lower for SM compared to those of C14mim+Br conventional micelle
Validation of a field deployable reactor for in situ formation of NOM-engineered nanoparticle corona
Effect of Headgroup Variation on the Self-Assembly of Cationic Surfactants with Sulfonatocalix[6]arene
The effect of headgroup variation on the association of supramolecular amphiphiles composed of 4-sulfonatocalix[6]arene (SCX6) and cationic surfactant possessing tetradecyl substituent was studied in aqueous solutions at pH 7. When the surfactant contained hydrophilic trimethylammonium, pyridinium, or 1-methylimidazolium headgroup, highly reversible temperature-responsive nanoparticle-supramolecular micelle transformation could be attained at appropriately chosen component mixing ratios and NaCl concentrations. In these cases, the substantial negative molar heat capacity change (ΔCp) rendered nanoparticle formation strongly endothermic at low temperature, whereas the assembly to supramolecular micelle was always accompanied by enthalpy gain. The ΔCp values became less negative when the charge density and the hydrophilic character of the surfactant headgroup diminished. The association of the more hydrophobic 6-methoxyquinolinium and quinolinium surfactants with SCX6 did not lead to supramolecular micelle formation because the self-assembly into nanoparticles was highly exothermic
Toward an Understanding of the Microstructure and Interfacial Properties of PIMs/ZIF-8 Mixed Matrix Membranes
A study integrating advanced experimental
and modeling tools was
undertaken to characterize the microstructural and interfacial properties
of mixed matrix membranes (MMMs) composed of the zeolitic imidazolate
framework ZIF-8 nanoparticles (NPs) and two polymers of intrinsic
microporosity (PIM-1 and PIM-EA-TB). Analysis probed both the initial
ZIF-8/PIM-1 colloidal suspensions and the final hybrid membranes.
By combination of dynamic light scattering (DLS) and transmission
electron microscopy (TEM) analytical and imaging techniques with small-angle
X-ray scattering (SAXS), the colloidal suspensions were shown to consist
mainly of two distinct kinds of particles, namely, polymer aggregates
of about 200 nm in diameter and densely packed ZIF-8-NP aggregates
of a few 100 nm in diameter with a 3 nm thick polymer top-layer. Such
aggregates are likely to impart the granular texture of ZIF-8/PIMs
MMMs as shown by SEM-XEDS analysis. At the molecular scale, modeling
studies showed that the surface coverage of ZIF-8 NPs by both polymers
appears not to be optimal with the presence of microvoids at the interfaces
that indicates only a moderate compatibility between the polymer and
ZIF-8. This study shows that the microstructure of MMMs results from
a complex interplay between the ZIF-8/PIM compatibility, solvent,
surface chemistry of the ZIF-8 NPs, and the physicochemical properties
of the polymers such as molecular structure and rigidity
- …