16 research outputs found

    The Use of Mouse Models for Understanding the Biology of Down Syndrome and Aging

    Get PDF
    Down syndrome is a complex condition caused by trisomy of human chromosome 21. The biology of aging may be different in individuals with Down syndrome; this is not well understood in any organism. Because of its complexity, many aspects of Down syndrome must be studied either in humans or in animal models. Studies in humans are essential but are limited for ethical and practical reasons. Fortunately, genetically altered mice can serve as extremely useful models of Down syndrome, and progress in their production and analysis has been remarkable. Here, we describe various mouse models that have been used to study Down syndrome. We focus on segmental trisomies of mouse chromosome regions syntenic to human chromosome 21, mice in which individual genes have been introduced, or mice in which genes have been silenced by targeted mutagenesis. We selected a limited number of genes for which considerable evidence links them to aspects of Down syndrome, and about which much is known regarding their function. We focused on genes important for brain and cognitive function, and for the altered cancer spectrum seen in individuals with Down syndrome. We conclude with observations on the usefulness of mouse models and speculation on future directions

    Rapamycin Treatment Ameliorates Age-Related Accumulation of Toxic Metabolic Intermediates in Brains of the Ts65Dn Mouse Model of Down Syndrome and Aging

    Get PDF
    Down syndrome (DS), caused by trisomy of chromosome 21, is the most common genetic cause of intellectual disability. Individuals with DS exhibit changes in neurochemistry and neuroanatomy that worsen with age, neurological delay in learning and memory, and predisposition to Alzheimer’s disease. The Ts65Dn mouse is the best characterized model of DS and has many features reminiscent of DS, including developmental anomalies and age-related neurodegeneration. The mouse carries a partial triplication of mouse chromosome 16 containing roughly 100 genes syntenic to human chromosome 21 genes. We hypothesized that there would be differences in brain metabolites with trisomy and age, and that long-term treatment with rapamycin, mechanistic target of rapamycin (mTOR) inhibitor and immunosuppressant, would correct these differences. Using HPLC coupled with electrochemical detection, we identified differences in levels of metabolites involved in dopaminergic, serotonergic, and kynurenine pathways in trisomic mice that are exacerbated with age. These include homovanillic acid, norepinephrine, and kynurenine. In addition, we demonstrate that prolonged treatment with rapamycin reduces accumulation of toxic metabolites (such as 6-hydroxymelatonin and 3-hydroxykynurenine) in aged mice

    Proteomic analysis of six- and twelve-month hippocampus and cerebellum in a murine Down syndrome model

    Get PDF
    This study was designed to investigate the brain proteome of the Ts65Dn mouse model of Down syndrome. We profiled the cerebellum and hippocampus proteomes of 6- and 12-month-old trisomic and disomic mice by difference gel electrophoresis. We quantified levels of 2082 protein spots and identified 272 (170 unique UniProt accessions) by mass spectrometry. Four identified proteins are encoded by genes trisomic in the Ts65Dn mouse. Three of these (CRYZL11, EZR, and SOD1) were elevated with p-value \u3c0.05, and 2 proteins encoded by disomic genes (MAPRE3 and PHB) were reduced. Intergel comparisons based on age (6 vs. 12 months) and brain region (cerebellum vs. hippocampus) revealed numerous differences. Specifically, 132 identified proteins were different between age groups, and 141 identified proteins were different between the 2 brain regions. Our results suggest that compensatory mechanisms exist, which ameliorate the effect of trisomy in the Ts65Dn mice. Differences observed during aging may play a role in the accelerated deterioration of learning and memory seen in Ts65Dn mice

    Reduced purine biosynthesis in humans after their divergence from Neandertals

    Get PDF
    We analyze the metabolomes of humans, chimpanzees, and macaques in muscle, kidney and three different regions of the brain. Although several compounds in amino acid metabolism occur at either higher or lower concentrations in humans than in the other primates, metabolites downstream of adenylosuccinate lyase, which catalyzes two reactions in purine synthesis, occur at lower concentrations in humans. This enzyme carries an amino acid substitution that is present in all humans today but absent in Neandertals. By introducing the modern human substitution into the genomes of mice, as well as the ancestral, Neandertal-like substitution into the genomes of human cells, we show that this amino acid substitution contributes to much or all of the reduction of de novo synthesis of purines in humans

    APOE3 Christchurch modulates ÎČ-catenin/Wnt signaling in iPS cell-derived cerebral organoids from Alzheimer’s cases

    Get PDF
    A patient with the PSEN1 E280A mutation and homozygous for APOE3 Christchurch (APOE3Ch) displayed extreme resistance to Alzheimer’s disease (AD) cognitive decline and tauopathy, despite having a high amyloid burden. To further investigate the differences in biological processes attributed to APOE3Ch, we generated induced pluripotent stem (iPS) cell-derived cerebral organoids from this resistant case and a non-protected control, using CRISPR/Cas9 gene editing to modulate APOE3Ch expression. In the APOE3Ch cerebral organoids, we observed a protective pattern from early tau phosphorylation. ScRNA sequencing revealed regulation of Cadherin and Wnt signaling pathways by APOE3Ch, with immunostaining indicating elevated ÎČ-catenin protein levels. Further in vitro reporter assays unexpectedly demonstrated that ApoE3Ch functions as a Wnt3a signaling enhancer. This work uncovered a neomorphic molecular mechanism of protection of ApoE3 Christchurch, which may serve as the foundation for the future development of protected case-inspired therapeutics targeting AD and tauopathies

    Brain Phenotype of Transgenic Mice Overexpressing Cystathionine ÎČ-Synthase

    Get PDF
    The cystathionine ÎČ-synthase (CBS) gene, located on human chromosome 21q22.3, is a good candidate for playing a role in the Down Syndrome (DS) cognitive profile: it is overexpressed in the brain of individuals with DS, and it encodes a key enzyme of sulfur-containing amino acid (SAA) metabolism, a pathway important for several brain physiological processes.Here, we have studied the neural consequences of CBS overexpression in a transgenic mouse line (60.4P102D1) expressing the human CBS gene under the control of its endogenous regulatory regions. These mice displayed a ∌2-fold increase in total CBS proteins in different brain areas and a ∌1.3-fold increase in CBS activity in the cerebellum and the hippocampus. No major disturbance of SAA metabolism was observed, and the transgenic mice showed normal behavior in the rotarod and passive avoidance tests. However, we found that hippocampal synaptic plasticity is facilitated in the 60.4P102D1 line.We demonstrate that CBS overexpression has functional consequences on hippocampal neuronal networks. These results shed new light on the function of the CBS gene, and raise the interesting possibility that CBS overexpression might have an advantageous effect on some cognitive functions in DS

    The CRISPR-Cas9 crADSL HeLa Transcriptome: A First Step in Establishing a Model for ADSL Deficiency and SAICAR Accumulation

    No full text
    Adenylosuccinate lyase (ADSL) catalyzes two steps in de novo purine synthesis (DNPS). Mutations in ADSL can result in inborn errors of metabolism characterized by developmental delay and disorder phenotypes, with no effective treatment options. Recently, SAICAR, a metabolic substrate of ADSL, has been found to have alternative roles in the cell, complicating the role of ADSL. crADSL, a CRISPR KO of ADSL in HeLa cells, was constructed to investigate DNPS and ADSL in a human cell line. Here we employ this cell line in an RNA-seq analysis to initially investigate the effect of DNPS and ADSL deficiency on the transcriptome as a first step in establishing a cellular model of ADSL deficiency. We report transcriptome changes in genes relevant to development, vascular development, muscle, and cancer biology, which provide interesting avenues for future research

    Theta-burst-induced LTP in Tg<i>hCBS</i>60.4 mice.

    No full text
    <p>Comparison of averaged LTP expressed as percent change in the slope of fEPSP <i>vs</i> time, induced by theta-burst stimulation (TBS, arrow) of glutamate afferents and recorded in slices from Tg<i>hCBS</i>60.4 (12 slices/9 animals) and control (10 slices/7 animals) mice. In the insert, representative traces of fEPSPs, recorded before and 60 min after TBS, are superimposed.</p
    corecore