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Abstract 

This study was designed to investigate the brain proteome of the Ts65Dn mouse model of Down 

syndrome.  We profiled the cerebellum and hippocampus proteomes of six and twelve-month-old trisomic and 

disomic mice by Difference Gel Electrophoresis. We quantified levels of 2082 protein spots and identified 272  

(170 unique UniProt accessions) by mass spectrometry. Four identified proteins are encoded by genes trisomic 

in the Ts65Dn mouse. Three of these (CRYZL11, EZR, and SOD1) were elevated with p value < 0.05, and two 

proteins encoded by disomic genes (MAPRE3 and PHB) were reduced. Inter-gel comparisons based on age (six 

versus twelve-month) and brain region (cerebellum versus hippocampus) revealed numerous differences. 

Specifically, 132 identified proteins were different between age groups, and 141 identified proteins were 

different between the two brain regions. Our results suggest that compensatory mechanisms exist which 

ameliorate the effect of trisomy in the Ts65Dn mice. Differences observed during aging may play a role in the 

accelerated deterioration of learning and memory seen in Ts65Dn mice. 
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1. Introduction 

Down syndrome (DS) is the most common chromosomal condition diagnosed in the United States, 

affecting about 1 in 700 live births (Parker et al., 2010; Presson et al., 2013). The DS phenotype is due to partial 

or complete trisomy of chromosome 21 (Hsa21), implicating overexpression of some or all Hsa21 genes, 

resulting in altered protein levels that are at least in part, responsible for the DS phenotype. DS neuropathology 

is generally characterized by structural, cellular, and anatomic defects in specific areas of the brain. Notably, 

neocortical structures, the hippocampus, and cerebellum are all disproportionately small. These brain changes 

become more pronounced with age (Lott, 2012; Raz et al., 1995).  

DS is the most common genetic cause of significant intellectual disability as well as the most common 

cause of dementia in people under 60 years of age worldwide, and individuals with DS constitute the largest 

well-defined group of people afflicted with early onset Alzheimer’s disease (AD) (Hartley et al., 2015). AD is 
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currently the sixth most common cause of death in the USA (Miniño et al., 2010). All individuals with DS 

develop AD-like pathology by age 40, and 70% or more develop dementia by age 60 (Hartley et al., 2015). The 

life expectancy of an individual with DS now approaches 60 years, and as life expectancy improves, the number 

of people with DS that also have AD is likely to increase (Glasson et al., 2002). Worldwide, the number of AD 

cases is predicted to rise to about 115 million by 2050 (Wimo and Prince, 2010). The association between DS 

and AD is important because studies of DS provide insights relevant to AD and its causes.  Understanding the 

mechanisms underlying the neurodegenerative changes in DS, and implementing approaches to prevent, delay, 

or treat them, are increasingly important health issues (Bittles et al., 2007; Hartley et al., 2015). 

Recently, mouse models of DS have become available (Vacano et al., 2012). The best characterized and 

most widely used of these is the Ts65Dn mouse [Ts(1716)65Dn (Davisson et al., 1990)]. The Ts65Dn mouse is 

trisomic for roughly 100 protein-coding genes syntenic to well-curated Hsa21 genes [based on the Mmu16 

breakpoint in Ts65Dn (Duchon et al., 2011) and MGI (Mouse Genome Informatics) annotation (Bult et al., 

2016)], and is disomic for about 16 Hsa21/Mmu16 protein-coding genes (Yu et al., 2010). Additionally, the 

Ts65Dn mouse is trisomic for up to 60 Mmu17 genes (Duchon et al., 2011; Reinholdt et al., 2011), although 

only ~28 encode proteins. The Ts65Dn mouse exhibits features in common with people with DS including loss 

of functional basal forebrain cholinergic neurons, structural and cellular abnormalities in the hippocampus and 

cerebellum, degeneration of the hippocampus, learning and memory disability, increased impairment of 

learning and memory with age, and numerous other developmental and age related abnormalities (Aldridge et 

al., 2007; Holtzman et al., 1996; Insausti et al., 1998; Kirsammer et al., 2008; Kurt et al., 2004; Levine et al., 

2009; Patterson and Costa, 2005; Reeves et al., 1995; Vacano et al., 2012). The Ts65Dn learning and memory 

deficits correlate with a hippocampal dysfunction that worsens as the mice age (Hyde and Crnic, 2001). Ts65Dn 

mice exhibit motor difficulties that resemble those observed in individuals with DS and these are consistent 

with cerebellar abnormalities (Hampton et al., 2004; Latash et al., 2002).  A recent study by Olmos-Serrano et 

al. demonstrates longitudinal loss of aspects of cognition (learning and memory) in Ts65Dn mice as they age 

from 2 months to 11 months of age, and includes an extensive discussion of the use of this mouse as a model for 

cognitive decline in DS and as a model for AD (Olmos-Serrano et al., 2016b). It is now clear from studies using 
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a wide variety of agents, that learning and memory abnormalities in Ts65Dn mice can be ameliorated via 

therapeutic intervention (Gardiner, 2010; Möhler, 2012; Ruparelia et al., 2012). However, clinical trials on 

people with DS have had only limited success (Gupta et al., 2016). It has been suggested that combinations of 

pharmacological and/or other treatments may be more effective (Gardiner, 2015). Clearly, identifying more 

targets for therapeutic intervention is a priority, and a primary motivation for this study. 

Gene dosage studies in both mice and humans show that RNA expression levels of some Hsa21 genes in 

diploid individuals vary substantially by more or less than the 150% expression expected in trisomy (Aït Yahya-

Graison et al., 2007; Prandini et al., 2007; Sultan et al., 2007). In many cases, protein expression correlates 

poorly with gene expression, and changes in protein abundance may be more directly relevant to brain 

development and function than changes in gene expression (Schwanhäusser et al., 2011). In a recent study of a 

set of proteins thought to be involved in learning and memory in DS and mouse models of DS, Spellman et al. 

report that protein levels are inconsistent with previously reported mRNA levels (Spellman et al., 2013). 

 Targeted studies employing reverse phase protein arrays (RPPA) in brain regions of Ts65Dn and 

euploid mice at 6 and 12 months of age compared levels of proteins in pathways hypothesized or known to be 

involved in brain function and cognition, including proteins in four pathways/processes; MAP kinase signaling, 

NMDA receptors, NUMB protein interactions, and the apoptosis pathway (Ahmed et al., 2017; 2014).  

Numerous significant changes in these proteins were observed due to trisomy, and changes seemed to be more 

significant at 12 months than at 6 months.  Fernandez et al. carried out a targeted analysis of synapse proteins in 

the Ts65Dn cerebrum and found only modest differences in protein levels (Fernandez et al., 2009). Numerous 

studies of individual proteins encoded by genes on chromosome 21 clearly demonstrate altered levels of 

expression and link these changes to the Ts65Dn phenotype. These studies focused on specific proteins or 

selected subsets of proteins based on hypotheses regarding their role in DS. 

There have been several studies aimed at characterizing “global” gene and/or protein expression. For 

example, studies by microarray or serial analysis of gene expression (SAGE), including one study focusing on 

the cerebellum (Saran, 2003), demonstrate changes in several hundred genes in individuals with DS and in 

trisomic mice (Chrast et al., 2000; Saran, 2003; Sommer and Henrique-Silva, 2008). Olmos-Serrano et al. 
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performed transcriptome analysis of three brain regions (cerebral neocortex, hippocampus, and cerebellar 

cortex) from DS and euploid individuals over the course of development, and found genome wide alteration in 

the expression of many genes. Principal Component Analysis (PCA) indicated segregation between DS and 

euploid samples, but even greater segregation by brain region and developmental period. Additionally, they 

demonstrated co-dysregulation of genes associated with oligodendrocyte differentiation and myelination, and 

validated these by cross-species comparison with Ts65Dn mice (Olmos-Serrano et al., 2016a).  

Two dimensional gel electrophoresis (2DGE) has been used to detect alterations in protein levels in both 

fetal and adult DS brain (Lubec, 2013; Sun et al., 2011). Many of the differentially abundant proteins identified 

in these studies are Hsa21 gene products, but these are not consistently elevated, and the expression of some 

proteins encoded by genes on other chromosomes is also altered significantly. Harris and colleagues employed a 

variant of 2DGE, difference gel electrophoresis (DiGE), to quantify protein differences in adult brains from 

individuals with DS (Harris et al., 2007). All proteins with altered levels were more abundant in brains from 

individuals with DS, but none were Hsa21 gene products.  

These “global” methods identify and measure relatively abundant proteins. Rabilloud and Lelong point 

out that 2DGE based methods are highly unlikely to detect transcription factors because of their low level of 

abundance (Rabilloud and Lelong, 2011), and this is supported by a study of mouse brain proteins that 

demonstrated transcription factor protein levels are generally very low (Wang et al., 2006). However, abundant 

proteins play significant roles in cell structure and function, and it is important to determine whether levels of 

these proteins change with trisomy and age in various brain regions, especially in regions of the brain known to 

be affected in DS. Challenges in the proteomic analysis of DS brain include variability in samples due to 

differences in post-mortem interval, age of individuals, pre-mortem events, and sample acquisition and 

preparation. Many studies have shown that expression of specific genes and proteins is altered in DS and in 

various mouse models of DS (for example, App, Kcnj6, Dyrk1a), and in several cases, these genes/proteins 

have been shown to affect the Ts65Dn phenotype.  The abundance of these proteins is generally low, and would 

be difficult to detect using 2DGE based methods. For example, Wang et al. semi-quantitatively analyzed levels 
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of 7792 mouse brain proteins, and only detected 7 proteins encoded by genes trisomic in Ts65Dn mice, and 

these were all present at relatively low levels (Wang et al., 2006). 

2. Materials and Methods 

2.1 Tissue samples 

Male Ts65Dn and disomic controls were obtained from the Ts65Dn breeding colony at the Eleanor 

Roosevelt Institute by crossing Ts65Dn females (The Jackson Laboratory, stock No: 001924) with 

B6EiC3SnF1/J males (The Jackson Laboratory, stock No: 001875), and from Dr. Tarik Haydar. Mice were 

cytogenetically tested to evaluate trisomy (Davisson et al., 1990). All procedures regarding the care and 

husbandry of these animals were approved by the Institutional Animal Care and Use Committee (IACUC) of 

the University of Denver, in accordance with the NIH Guide for the Care and Use of Laboratory Animals. Mice 

were shipped to the University of North Dakota, Grand Forks, via World Courier, housed at the University of 

North Dakota’s Center for Biomedical Research, and allowed at least 5 days’ acclimation prior to sacrifice. 

Mice were sacrificed via head-focused high-energy microwave irradiation (Hunsucker et al., 2008). Cerebellum 

and hippocampus were dissected immediately after irradiation, frozen on a metal plate atop dry-ice within 2 

minutes, and stored at -80°. All procedures regarding the care and euthanasia of these animals were approved by 

the IACUC of the University of North Dakota, in accordance with the NIH Guide for the Care and Use of 

Laboratory Animals. The number and type of samples are listed in Supplementary Tables S4 (“Brain 

Samples”). 

2.2 Preparation of hippocampal and cerebellar protein extracts 

Tissues were homogenized as described previously (Hunsucker et al., 2008), except the sonication time 

was three 15-second bursts (Branson Sonifier Cell Disruptor 185, setting 3) separated by 30-second incubations 

on ice. Samples were then centrifuged (16,000 x g for 25 minutes), and the supernatants were collected, frozen 

on dry ice, and stored at -80 °C. The extracts were diluted 4-fold with TBS (50 mM Tris, pH 7.5, 150 mM 

NaCl) and the proteins were precipitated by the addition of methanol/chloroform (Wessel and Flügge, 1984). 

The protein pellets were dried in a centrifuge under reduced pressure (Speedvac, Savant), then allowed to 
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rehydrate overnight in reaction buffer (7 M urea, 2 M thiourea, 4% w/v CHAPS). The protein sample was 

supplemented with 10 mM DTT, incubated (2 hours, room temperature), homogenized and centrifuged (16,000 

x g, 15 minutes, room temperature). The re-solubilized protein was collected and protein concentrations were 

determined (Bradford, 1976). Each sample was diluted to 5 mg/ml of total protein with reaction buffer 

containing 10 mM DTT, flash frozen with liquid N2, and stored at -80 °C until analysis. 

2.3 Labeling with Cy dyes 

Labeling reactions used 50 µg of protein, either from individual samples, or from the pool of all samples 

(a combination of equal volumes of protein from all the individual samples which serves as an internal standard 

for inter-gel comparisons). A 10 µl aliquot containing 50 µg of protein in reaction buffer was supplemented 

with 1 µl of 300 mM Tris, pH 8.5, and the final pH was checked with pH paper to ensure optimal labeling. One 

µl of 200 µM Cy dye (200 pmol) in anhydrous dimethylformamide (Aldrich) was added to the protein and the 

reaction allowed to proceed [30 minutes, 4 °C, in the dark (Unlü et al., 1997)]. The reaction was quenched by 

addition of 1 µl of 10 mM lysine and the samples combined (e.g., one sample labeled with Cy5, one sample 

labeled with Cy3, and the internal standard sample labeled with Cy2). This mixture was supplemented with 

reaction buffer and with 0.1 M hydroxyethyl disulfide (5.4 µl, Destreak, GE Healthcare), 1% broad range 

Pharmalytes 3-10 NL (GE Healthcare), and 0.003% bromophenol blue to give a final volume of 450 µl for 2D 

gel electrophoresis. 

2.4 2D gel electrophoresis 

Disomic and trisomic samples were paired and run together on analytical gels (for example, the 8 

disomic six-month-old cerebellum samples were paired with the 8 trisomic six-month-old cerebellum samples 

and run on 8 separate gels, and each gel was also loaded with the pooled standard. DiGE was performed as 

described previously (Hunsucker et al., 2008).  

2.5 Scanning of labeled images 

Analytical gels were scanned at 100 µm resolution on a Typhoon 9400 Variable Mode Laser Imager 

(GE Healthcare) with filter settings for Cy3 at excitation 532 nm and emission 580 nm with bandpass 30 nm; 
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scanning for Cy5 was at excitation 633 nm and emission 670 nm with bandpass 30 nm and scanning for Cy2 

was at excitation 468 nm and emission 520 nm with bandpass 40 nm. 

2.6 Image analysis 

Progenesis SameSpots software (Nonlinear Dynamics) was used for spot detection and relative 

quantification of proteins based on fluorescence images. Spot boundaries were detected automatically, peak 

volumes were measured for each protein spot in the three fluorescent channels (Cy2, Cy3 and Cy5) and the 

normalized volume ratios were calculated to directly compare volumes of each protein spot between channels. 

Spot volumes for each sample are provided in Supplementary Data (“Spot Volumes” tab). A two-tailed T-test 

was used to calculate probabilities associated with relative fold-changes.  

2.7 Spot excision, enzymatic digestion, and protein identification 

A list of candidate spots for identification was prepared: the criteria for spot selection was based on 

whether the spot had good boundaries and was well resolved from neighboring spots. Protein identification was 

based on preparative gels loaded with 50 µg of the pooled internal standard labeled with Cy2 (for visualization) 

and 750 µg of unlabeled pooled internal standard (an adequate amount of protein for identification by mass 

spectrometry).  Preparative gels were prepared as described above except that isoelectric focusing was for 

133,000 volt-hours. Gels were stained with Lava Purple Total Protein Stain (Fluortechnics) and scanned at 

excitation 532 nm and emission 610 nm with bandpass 30 nm. Protein spots were matched to the preparative 

gels, excised, subjected to in-gel tryptic digestion and proteins were identified by matrix assisted laser 

desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Protein spot excision and in-gel 

enzymatic digestion were automated (Ettan Spot Picker fitted with a 2.0 mm picking head and Ettan Spot 

Digester; GE Healthcare) as previously described (Hunsucker et al., 2008). All digests were analyzed by 

MALDI-TOF MS (Voyager DE-PRO, Applied Biosystems) as previously described (Hunsucker et al., 2008). 

Spectra were collected over the range m/z 500-5000. Peptide mass fingerprints were internally calibrated to 

monoisotopic trypsin autolysis peaks. Spectra were processed using ProTS Data (Efeckta Technologies) to 

generate a peak list that was then submitted to Mascot Daemon (Matrix Science Ltd.) for database searching. 
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Spectral pre-processing included defining the baseline, noise, and signal-to-noise ratio as well as monoisotopic 

peak selection. A signal-to-noise ratio in ProTS Data > 4 was required for inclusion in the peak list. Search 

parameters were as follows: taxonomy selection, Mammalia (49,887 sequences); fixed modification, 

carbamidomethylation of cysteines; trypsin as the enzyme allowing for one missed cleavage and ± 50 ppm 

peptide mass tolerance. Searches were not constrained by pI or MW. The minimal requirements for protein 

identification have been described (Hunsucker et al., 2008) and peptide and protein assignments followed 

published guidelines (Bradshaw et al., 2006). The identified spots are listed in Supplementary Data (“Identified 

Spots” tab). 

2.8 Statistical analysis: prot2D 

Direct DiGE comparison was only possible for disomic and trisomic samples, but we were interested in 

also comparing samples by age (six-month versus twelve-month) and brain region (cerebellum versus 

hippocampus). We therefore extended our analysis to include 2DGE inter-gel (cerebellum versus hippocampus 

and six-month versus twelve-month) peak volume comparison, using the R-package prot2D (Artigaud et al., 

2013). The number of samples in each comparison is shown in Supplementary Tables S4 (“Analysis Matrix”). 

The Norm.qt module (quantiles normalization) in the prot2D package was used to normalize the peak volumes, 

the data was coerced into an expression set with ES.prot, and modT.prot [the moderate t-test (Smyth, 2004)] 

was used to identify differentially expressed protein spots in the normalized data using method.fdr = “BH” 

[Classical Benjamini-Hochberg false discovery rate (Benjamini and Hochberg, 1995)] with adjusted p value < 

0.05. Since DiGE is an inherently more robust method (it includes an internal standard and comparison is 

“within gel”) than 2DGE (between gel) comparison, we employed false discovery rate (FDR) for the 2DGE 

analyses. 

2.9 Principal Component Analysis 

PCA values were calculated with normalized peak volumes using the prcomp() function in R (R Core 

Team, 2015). 
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2.10 Functional enrichment analysis 

Eight lists of unique UniProt Accessions representing spots with highly significant differences (FDR < 

0.005 for increased confidence in validity of spot differences) by age or brain region were prepared 

[Supplementary Tables S5 (“Spot Lists” tab). Databases were queried with these accession lists via ClueGO 

(version 2.3.3) + CluePedia (version 1.3.3) (Bindea et al., 2013; 2009), which are biological network plugins for 

Cytoscape (version 3.5.1), an open source software platform for visualizing complex networks (Shannon et al., 

2003). The following databases were queried: GO 26.06.2017 (BiologicalProcess, CellularComponent, and 

MolecularFunction) (Ashburner et al., 2000), and Reactome 26.06.2017 (Croft et al., 2014). Results are shown 

in Supplementary Fig. S1 and S2, and Supplementary Tables S5. 

3. Results 

We used DiGE to compare the proteome of the Ts65Dn hippocampus and cerebellum at both six months 

and twelve months to that of diploid age-matched (control) mice. In this study, we identified 272 spots 

representing 170 unique proteins [Supplementary Data (“Identified Spots” tab)]. In addition to differences in 

protein levels between disomic and trisomic animals, we employed 2DGE to investigate differences in protein 

levels due to age, and differences between brain regions (i.e., cerebellum versus hippocampus). To accomplish 

this, we used the peak volumes obtained from DiGE analysis of gel images, and evaluated differences in 

abundance using prot2D (Artigaud et al., 2013), a module for R (R Core Team, 2015). 

3.1 Differential expression of proteins in trisomic (Ts65Dn) versus disomic (control) samples 

Six spots representing five proteins were significant comparing trisomic (Ts65Dn) versus disomic 

(control) samples (Table 1). Four of the identified proteins are encoded by genes that are trisomic in Ts65Dn 

mice. Three (Cbr1, Cryzl1, and Sod1) are Hsa21 homologs, and the fourth (Ezr) maps to a region of Mmu17 

that is trisomic in Ts65Dn mice (Duchon et al., 2011). Of these, three proteins (CRYZL1, EZR, and SOD1) 

show increased abundance (p value < 0.05) in Ts65Dn, while the level of one (CBR1) is unchanged (p > 0.05). 

We also identified two proteins that are significantly elevated in disomic samples (p value < 0.05); prohibitin 

(PHB; P67778) and microtubule-associated protein RP/EB family member 3 (MAPRE3; Q6PER3). 
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Table 1: Differences in Identified Proteins by Ploidy (DiGE) 
 

Spot 
Number 

Protein ID UniProt 
Accession 

Gene 
Symbol 

p value Ratio 
(trisomic: disomic) 

v1567 Microtubule-associated protein 
RP/EB family member 3 

Q6PER3 Mapre3 1.89E-02 0.83 

v3328 Prohibitin P67778 Phb 3.96E-02 0.89 
v1394 Carbonyl reductase [NADPH] 1 P48758 Cbr1* 5.37E-01 1.00 

v794 Ezrin P26040 Ezr 2.26E-02 1.12 
v3052 Quinone oxidoreductase-like 1 Q921W4 Cryzl1* 4.80E-02 1.13 
v2279 Ezrin P26040 Ezr 2.93E-02 1.18 
v1901 Superoxide dismutase P08228 Sod1* 3.14E-04 1.30 

 
Table 1: Bold gene symbols indicate genes that are trisomic in Ts65Dn. Gene symbols with asterisks (*) are Hsa21 
homologs. Cbr1, which has a p value > 0.05, was included here because it is an Hsa21 homolog and trisomic in Ts65Dn. 
 

Figure 1: Principal Component Analysis 

 
 
Figure 1. Spots indicate individual tissue samples, with group indicated by color. PCA values were calculated 
using the prcomp() function in R (R Core Team, 2015). 
 

PCA indicated essentially no partitioning of samples by ploidy, but very clear partitioning by age and 

brain region (Figure 1). We therefore extended our analysis to include inter-gel (2DGE) comparisons by age 

and brain region (Tables 2 and 3) because changes due to age may be relevant to the loss of learning and 

memory, and degeneration of brain regions, observed in DS and in Ts65Dn mice. 

Table 2: Twelve-Month versus Six-Month: Significant Spots 
 

All Spots 
Comparison Significant Spots ↑ Twelve-Month ↑ Six-Month 
Age in Hippocampus 654 (372) 319 (190) 335 (182) 
Age in Cerebellum 766 (455) 355 (208) 411 (247) 
Age in Trisomic 398 (104) 176 (43) 222 (61) 

Age RegionPloidy

6 Month
12 Month

Disomic
Trisomic

Cerebellum
Hippocampus

PC1

P
C

2
-2

0
-1

0
0

10
20

-30 -20 -10 0 10 20
PC1

P
C

2
-2

0
-1

0
0

10
20

-30 -20 -10 0 10 20
PC1

P
C

2
-2

0
-1

0
0

10
20

-30 -20 -10 0 10 20
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Age in Disomic 308 (91) 134 (37) 174 (54) 
 

Identified Spots 
Comparison Significant Spots ↑ Twelve-Month ↑ Six-Month 
Age in Hippocampus 119 (87) 56 (45) 63 (42) 
Age in Cerebellum 156 (105) 73 (48) 83 (57) 
Age in Trisomic 106 (35) 52 (17) 54 (18) 
Age in Disomic 83 (33) 41 (13) 42 (20) 

 
 

Table 3: Hippocampus versus Cerebellum: Significant Spots 
 

All Spots 
Comparison Significant Spots ↑ Hippocampus ↑ Cerebellum 
Region in Twelve-Month 1135 (825) 570 (422) 565 (403) 
Region in Six-Month 793 (440) 364 (210) 429 (230) 
Region in Trisomic 804 (489) 388 (244) 416 (245) 
Region in Disomic 778 (448) 380 (217) 398 (231) 

 
Identified Spots 

Comparison Significant Spots ↑ Hippocampus ↑ Cerebellum 
Region in Twelve-Month 162 (127) 84 (67) 78 (60) 
Region in Six-Month 112 (67) 53 (30) 59 (37) 
Region in Trisomic 103 (70) 50 (35) 53 (35) 
Region in Disomic 100 (54) 53 (30) 47 (24) 

 
Tables 2 and 3: Values in black are FDR < 0.05, values in red are FDR < 0.005. 

 
3.2 Functional enrichment analysis: differential expression by age. 

We performed functional enrichment analysis on identified proteins with significantly different levels in 

six versus twelve-month-old in cerebellum, hippocampus, disomic, and trisomic sample groups. Lists of unique 

UniProt accessions were used to query gene ontology (GO) and pathway databases using ClueGO and 

CluePedia (Bindea et al., 2013; 2009) which are biological network plugins for Cytoscape (Shannon et al., 

2003; Smoot et al., 2011), a platform for visualizing complex networks. The following databases were queried: 

GO 26.06.2017 [BiologicalProcess, CellularComponent, and MolecularFunction (Ashburner et al., 2000)] and 

Reactome 26.06.2017 [Pathway and Reaction (Croft et al., 2014)]. Collectively querying the GO and Reactome 

databases returned overview term functional groups (Table 4), which include various subgroups 

(Supplementary Tables S1). 

 

Table 4: ClueGO Age Tables 
 

Age in Cerebellum 
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GOID Ontology 

Source 
GOTerm Nr. 

Genes 
% 

Assoc. 
Genes 

Term 
PValue 

Associated Genes Found 

Reactome:R-
MMU-1428517 

Pathways The citric acid (TCA) cycle 
and respiratory electron 

transport 

9 6.2 6.15E-10 Atp5a1, Atp5b, Dld, Dlst, 
Ldhb, Mdh2, Ndufa12, 

Ndufs4, Ogdh 
Reactome:R-

MMU-5663213 
Pathways RHO GTPases Activate 

WASPs and WAVEs 
4 12.5 2.75E-06 Actb, Arpc5, Grb2, Mapk1 

Reactome:R-
MMU-70895 

Pathways Branched-chain amino acid 
catabolism 

10 4.1 3.52E-09 Aspa, Dld, Dlst, Glud1, Glul, 
Ivd, Ogdh, Psma7, Psmb2, 

Psmb5 
Reactome:R-
MMU-71291 

Pathways Metabolism of amino acids 
and derivatives 

10 4.1 3.52E-09 Aspa, Dld, Dlst, Glud1, Glul, 
Ivd, Ogdh, Psma7, Psmb2, 

Psmb5 
GO:0006091 Biological 

Process 
generation of precursor 
metabolites and energy 

15 4.3 1.49E-13 Dld, Dlst, Eno1b, Eno2, Hk1, 
Mdh1, Mdh2, Ndufa12, 

Ndufs4, Ogdh, Pfkp, Pgam1, 
Pgk1, Pkm, Ppp1ca 

GO:0008064 Biological 
Process 

regulation of actin 
polymerization or 
depolymerization 

7 4.3 6.87E-07 Arpc5, Cfl1, Grb2, Pfn1, 
Sh3bgrl3, Twf2, Wdr1 

GO:0016836 Molecular 
Function 

hydro-lyase activity 3 6.1 4.62E-04 Car2, Eno1b, Eno2 

GO:0021762 Biological 
Process 

substantia nigra development 5 13.2 1.09E-07 Actb, Cnp, Cox6b1, Hspa5, 
Mbp 

GO:0046164 Biological 
Process 

alcohol catabolic process 3 6.5 3.83E-04 Aldh2, Apoe, Gpd2 

GO:0046496 Biological 
Process 

nicotinamide nucleotide 
metabolic process 

13 9.6 2.33E-16 Dld, Eno1b, Eno2, Hk1, 
Ldhb, Mdh1, Mdh2, Me1, 
Ogdh, Pfkp, Pgam1, Pgk1, 

Pkm 
GO:1990204 Cellular 

Component 
oxidoreductase complex 6 6.3 5.01E-07 Dld, Dlst, Gpd2, Ndufa12, 

Ndufs4, Ogdh 
 

Age in Hippocampus 
 

GOID Ontology 
Source 

GOTerm Nr. 
Genes 

% 
Assoc. 
Genes 

Term 
PValue 

Associated Genes Found 

Reactome:R-
MMU-111885 

Pathways Opioid Signalling 4 4.4 9.17E-05 Gnao1, Gnb1, Marcks, 
Ppp1ca 

Reactome:R-
MMU-399956 

Pathways CRMPs in Sema3A signaling 3 18.8 9.34E-06 Crmp1, Crmp2, Crmp3 

GO:0008064 Biological 
Process 

regulation of actin 
polymerization or 
depolymerization 

7 4.3 2.27E-07 Arpc5, Capzb, Cttn, Dstn, 
Grb2, Pfn2, Wdr1 

GO:0009167 Biological 
Process 

purine ribonucleoside 
monophosphate metabolic 

process 

11 4.2 6.39E-11 Aprt, Atp5b, Cox5b, Eno1b, 
Ndufa10, Ndufs1, Ogdh, 

Park7, Pgam1, Pkm, Tpi1 
GO:0009168 Biological 

Process 
purine ribonucleoside 

monophosphate biosynthetic 
process 

3 4.3 7.92E-04 Aprt, Atp5b, Cox5b 

GO:0016836 Molecular 
Function 

hydro-lyase activity 4 8.2 8.24E-06 Aco2, Car2, Eno1b, Park7 

GO:0044724 Biological 
Process 

single-organism carbohydrate 
catabolic process 

7 5.8 2.76E-08 Eno1b, Gpd2, Ogdh, Pgam1, 
Pkm, Ppp1ca, Tpi1 

GO:0098798 Cellular 
Component 

mitochondrial protein 
complex 

6 4.4 1.57E-06 Atp5b, Cox5b, Etfa, 
Ndufa10, Ndufs1, Park7 
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Age in Disomic 

 
GOID Ontology 

Source 
GOTerm Nr. 

Genes 
% 

Assoc. 
Genes 

Term 
PValue 

Associated Genes Found 

Reactome:R-
MMU-70263 

Pathways Gluconeogenesis 3 8.3 1.00E-05 Eno1b, Eno2, Tpi1 

GO:0016836 Molecular 
Function 

hydro-lyase activity 3 6.1 2.56E-05 Car2, Eno1b, Eno2 

GO:0046164 Biological 
Process 

alcohol catabolic process 3 6.5 2.11E-05 Aldh2, Apoe, Tpi1 

 
Table 4: % Associated Genes indicates the percent of the genes defining a given GO term that were listed (as accessions) 
in the ClueGO spot list. The “Age in Trisomic” protein accessions did not map to any networks. See Supplementary 
Tables S5 for more details and subnetworks. 
 

3.3 Functional enrichment analysis: differential expression by brain region. 

We performed functional enrichment analysis on the identified proteins with significantly different 

levels in hippocampus versus cerebellum in six-month, twelve-month, disomic, and trisomic subsets. Lists of 

unique UniProt accessions were used to query GO and pathway databases using ClueGO and CluePedia. 

Collectively querying the GO and Reactome databases returned overview term functional groups (Table 5), 

which include various subgroups (Supplementary Tables S2). 

Table 5: ClueGO Region Tables 
 

Region in Six-Month 
 

GOID Ontology 
Source 

GOTerm Nr. 
Genes 

% 
Assoc. 
Genes 

Term 
PValue 

Associated Genes Found 

Reactome:R-
MMU-210991 

Pathways Basigin interactions 4 8.0 7.22E-06 Actb, Dnm1, Crmp2, Ezr 

GO:0008064 Biological 
Process 

regulation of actin 
polymerization or 
depolymerization 

7 4.3 1.56E-07 Arpc2, Arpc5, Capzb, Cttn, 
Pfn2, Twf2, Wdr1 

GO:0016836 Molecular 
Function 

hydro-lyase activity 3 6.1 2.47E-04 Aco2, Car2, Eno1b 

GO:0021762 Biological 
Process 

substantia nigra development 3 7.9 1.15E-04 Actb, Ckb, Cox6b1 

GO:0030516 Biological 
Process 

regulation of axon extension 4 4.8 5.42E-05 Apoe, Cttn, Crmp2, Twf2 

GO:0044724 Biological 
Process 

single-organism carbohydrate 
catabolic process 

7 5.8 1.89E-08 Eno1b, Gpd2, Hmgb1, Pfkp, 
Pgam1, Pkm, Pygm 

GO:0046164 Biological 
Process 

alcohol catabolic process 3 6.5 2.04E-04 Aldh2, Apoe, Gpd2 

GO:0048489 Biological 
Process 

synaptic vesicle transport 6 4.7 7.65E-07 Dnm1, Crmp2, Napb, Pfn2, 
Snap25, Stxbp1 

 
Region in Twelve-Month 
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GOID Ontology 

Source 
GOTerm Nr. 

Genes 
% 

Assoc. 
Genes 

Term 
PValue 

Associated Genes Found 

Reactome:R-
MMU-1428517 

Pathways The citric acid (TCA) cycle 
and respiratory electron 

transport 

10 6.9 4.86E-10 Atp5a1, Etfa, Glo1, Mdh2, 
Ndufa10, Ndufa12, Ndufa8, 

Ndufs3, Ndufs4, Ndufs8 
GO:0000502 Cellular 

Component 
proteasome complex 3 4.3 3.11E-03 Psmb2, Psmb5, Txnl1 

Reactome:R-
MMU-399956 

Pathways CRMPs in Sema3A signaling 4 25.0 4.90E-07 Crmp1, Crmp2, Crmp3, 
Crmp4 

GO:0008064 Biological 
Process 

regulation of actin 
polymerization or 
depolymerization 

8 4.9 4.01E-07 Arpc2, Arpc5, Capzb, Cfl1, 
Pfn1, Pfn2, Sh3bgrl3, Wdr1 

GO:0009636 Biological 
Process 

response to toxic substance 12 5.1 2.93E-10 Cnp, Gsta4, Hbb-b1, Mapk1, 
Mbp, Nefl, Pebp1, Prdx1, 

Prdx3, Sod1, Txnl1, Uba52 
GO:0015036 Molecular 

Function 
disulfide oxidoreductase 

activity 
3 7.3 6.61E-04 Pgk1, Sh3bgrl3, Txnl1 

GO:0021761 Biological 
Process 

limbic system development 6 4.7 1.51E-05 Arpc5, Cfl1, Nefl, Pebp1, 
Uba52, Ywhae 

GO:0021762 Biological 
Process 

substantia nigra development 6 15.8 1.08E-08 Actb, Ckb, Cnp, Mbp, 
Ndufs3, Ywhae 

GO:0023026 Molecular 
Function 

MHC class II protein 
complex binding 

3 18.8 3.74E-05 Hsp90aa1, Pkm, Ywhae 

GO:0033267 Cellular 
Component 

axon part 9 4.6 1.18E-07 Cplx1, Crmp2, Mbp, Nefl, 
Pfn2, Sod1, Stxbp1, Syn1, 

Uchl1 
GO:0042470 Cellular 

Component 
melanosome 7 6.7 2.78E-07 Atp6v1b2, Cnp, Erp29, 

Hsp90aa1, Hsp90b1, Prdx1, 
Ywhae 

GO:0044275 Biological 
Process 

cellular carbohydrate 
catabolic process 

5 14.7 2.81E-07 Gpd2, Hmgb1, Pgam1, 
Ppp1ca, Pygm 

GO:0044306 Cellular 
Component 

neuron projection terminus 8 5.9 9.97E-08 Cplx1, Crmp2, Glul, Pebp1, 
Pfn2, Stxbp1, Syn1, Uchl1 

GO:0044724 Biological 
Process 

single-organism carbohydrate 
catabolic process 

7 5.8 6.91E-07 Gpd2, Hmgb1, Pgam1, Pgk1, 
Pkm, Ppp1ca, Pygm 

 
Region in Disomic 

 
GOID Ontology 

Source 
GOTerm Nr. 

Genes 
% 

Assoc. 
Genes 

Term 
PValue 

Associated Genes Found 

Reactome:R-
MMU-210991 

Pathways Basigin interactions 4 8.0 3.51E-06 Actb, Dnm1, Crmp2, Ezr 

Reactome:R-
MMU-399956 

Pathways CRMPs in Sema3A signaling 3 18.8 4.62E-06 Crmp1, Crmp2, Crmp4 

GO:0031333 Biological 
Process 

negative regulation of protein 
complex assembly 

5 4.1 5.58E-06 Capzb, Hmgb1, Pfn2, 
Stxbp1, Twf2 

GO:0048489 Biological 
Process 

synaptic vesicle transport 6 4.7 2.58E-07 Dnm1, Crmp2, Napb, Pfn2, 
Snap25, Stxbp1 

 
Region in Trisomic 

 
GOID Ontology 

Source 
GOTerm Nr. 

Genes 
% 

Assoc. 
Genes 

Term 
PValue 

Associated Genes Found 

Reactome:R-
MMU-1428517 

Pathways The citric acid (TCA) cycle 
and respiratory electron 

transport 

6 4.1 2.41E-06 Aco2, Glo1, Mdh2, Ndufa10, 
Ndufa12, Ndufs8 
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Reactome:R-
MMU-210991 

Pathways Basigin interactions 5 10.0 2.19E-07 Actb, Dnm1, Crmp2, Ezr, 
Mapk1 

Reactome:R-
MMU-399956 

Pathways CRMPs in Sema3A signaling 4 25.0 8.09E-08 Crmp1, Crmp2, Crmp3, 
Crmp4 

Reactome:R-
MMU-5663213 

Pathways RHO GTPases Activate 
WASPs and WAVEs 

4 12.5 1.55E-06 Actb, Arpc2, Arpc5, Mapk1 

GO:0021762 Biological 
Process 

substantia nigra development 5 13.2 5.31E-08 Actb, Ckb, Cnp, Mbp, Ywhae 

GO:0042470 Cellular 
Component 

melanosome 5 4.8 8.92E-06 Atp6v1b2, Cnp, Erp29, 
Hsp90b1, Ywhae 

GO:0060052 Biological 
Process 

neurofilament cytoskeleton 
organization 

3 30.0 2.13E-06 Nefl, Nefm, Sod1 

 
Table 5: % Associated Genes indicates the percent of the genes defining a given GO term that were listed (as accessions) 
in the ClueGO spot list. See Supplementary Tables S5 for more details and subnetworks. 
 

3.4 Differences in CRMP proteins by age and brain region 

It was clear that a large number of spots (7) had been identified as CRMP2 peptides, and that the 

expression of the CRMP2 spots by age and region was unusual. Given the importance of CRMP2 (and other 

CRMPs) in semaphorin 3A (SEMA3A) signaling and cytoskeleton mediated processes such as axon elongation 

and synaptic vesicle transport, we decided to investigate the CRMP levels more closely. In addition, seven more 

spots had been identified as other members of the CRMP family of proteins. Spots representing CRMP proteins 

were clearly significantly different by age and by brain region (Supplementary Table S3). 12 spots (of the 14 

spots representing all the CRMP proteins) were elevated in hippocampus versus cerebellum at twelve-months. 

However, at six-months, there were no significant differences between CRMP spot levels, except for one 

CRMP2 spot (975) which was elevated in cerebellum samples. With age, 8 of the 14 CRMP spots were elevated 

in six-month versus twelve-month cerebellum samples, while 10 of 14 spots were elevated in twelve-month 

versus six-month hippocampus samples. In addition, the elevated levels of spots 991 and 992 (CRMP1) in 

twelve-month samples were also observed only in the disomic sample set.  Similarly, the elevated levels in 

hippocampus of spots 965 and 2413 (CRMP2) were observed only in the disomic sample set. 

Figure 2 shows networks that are different by age in cerebellum (Figure 2 A) and in hippocampus 

(Figure 2 B). The only protein in common is CRMP2, which is elevated at six-months in cerebellum (spots 

v963, v975, v2323, and v2413), but is elevated at twelve-months in hippocampus (spots v965, v975, v2335, and 
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v2337), which strongly suggests that CRMP2 and pathways including CRMP2 are regulated very differently in 

cerebellum and hippocampus. 

Figure 2: CRMP2 in Aging 

 
 

Figure 2. CRMP2 in Aging. A) CRMP2 containing networks that are different by age (six versus twelve-month) in 
cerebellum, B) networks that are different by age in hippocampus. 

 

Figure 3 shows networks that are different by region in six-month (Figure 3 A) and in twelve-month 

(Figure 3 B). The two sets of networks are again very different, but a few of the spot levels are similar. For 

example, one (of four) dynamin-1 spot, v651, is elevated in hippocampus at both six and twelve-months of age. 

Ezr (v794 and v2279), Napb (v3312), and Uchl1 are also elevated in hippocampus at both ages. Figure 3 C) 

shows networks in comparison of disomic cerebellum with disomic hippocampus, and D) shows trisomic 

cerebellum versus trisomic hippocampus. The levels of these spots is largely the same in the two networks, 

except for Mapk1 (v1296), which is elevated in cerebellum in trisomic samples, and Snap25 (v3467) which is 

elevated in cerebellum in disomic samples. The log2 values for all the spots in the figures are reported in 

Supplementary Tables S1 and S2 (“log2” tabs). 
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Figure 3: CRMP2 in Region 

 
 

Figure 3. CRMP2 in Region. A) CRMP2 containing networks for cerebellum versus hippocampus comparison 
at six-months of age, and B) networks for the same comparison at twelve-months of age. 
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4. Discussion 

4.1 Overview 

In this study, we used the Ts65Dn mouse model of DS and sacrificed mice via head-focused high-

energy microwave irradiation. We demonstrated previously that this method fixes brain chemistry at the time of 

death and preserves the in situ state of proteins (Hunsucker et al., 2008). Cerebellum and hippocampus were 

harvested at six months of age because the Ts65Dn mice show relatively good maximal learning and memory 

ability at this stage, and at twelve months of age, at which time the Ts65Dn mice begin to lose these abilities 

and show signs of hippocampal and cerebellar degeneration.  Recent work has demonstrated that cognitive 

decline can be detected by 11 months of age in euploid mice (Olmos-Serrano et al., 2016b).  Thus, our 

examination of the Ts65Dn proteome at twelve months of age should be relevant to cognitive decline at this 

age. 

When all three variables examined in this study are considered - age, brain region, and ploidy - changes 

in protein expression were much more dependent on age and brain region than ploidy. This conclusion was 

apparent when the data were examined by PCA (Figure 1). The DS and Ts65Dn phenotypes do not involve 

marked changes in protein expression in the relatively abundant proteins detected here in cerebellum and 

hippocampus, even though both regions are significantly affected.  

In contrast, we observed numerous regional (i.e., cerebellum versus hippocampus) and age-related (i.e., 

six-month versus twelve-month) differences in brain protein levels. This is consistent with transcriptome 

analysis by Olmos-Serrano et al. of three brain regions (cerebral neocortex, hippocampus, and cerebellar cortex) 

from DS and euploid individuals over the course of development. They observed altered expression of many 

genes, predominantly due to differences in brain region or developmental stage rather than ploidy (Olmos-

Serrano et al., 2016a). These potentially have important effects on phenotype at birth and as the mice age.  For 

example, changes in proteins important for synaptic plasticity, especially decreases in levels of some of these 

proteins in the hippocampus with age, may relate to declines in learning and memory dependent on 

hippocampal function. In a separate study, Olmos-Serrano et al. observed cognitive decline in euploid mice as 

well as a more pronounced decline in Ts65Dn mice by 11 months of age (Olmos-Serrano et al., 2016b), and we 
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hypothesize that the alterations we observed in the proteome with age are relevant to cognitive decline 

associated with aging in both euploid and trisomic mice.  It is reasonable to expect that abundant proteins in 

hippocampus are important in hippocampal function, and proteins abundant in cerebellum are important in 

cerebellar function.  We discuss specific examples relevant to Ts65Dn mice and individuals with DS and AD 

below, recognizing that other alterations may also be important. 

Other studies of changes in the Ts65Dn brain proteome compared to euploid controls have been reported 

and it is useful to compare those results with ours. Until now we know of only one study on the Ts65Dn mouse 

model proteome using 2DGE (Wisniewski et al., 2006). That study employed 3-month-old Ts65Dn mice and 

used 2DGE/silver stain and MS/MS for identification of brain proteins. The authors demonstrated increased 

levels of 17 proteins and decreased levels of 4 proteins. Only one of the elevated proteins, carbonyl reductase 

[NADPH] 3 (CBR3), is trisomic in Ts65Dn mice. We identified 8/17 of these proteins in our study: i.e., 

carbonic anhydrase 2 (CA2; P00920), nucleoside diphosphate kinase A (NME1; P15532), dual specificity 

protein phosphatase 3 (DUSP3; Q9D7X3) ubiquitin-conjugating enzyme E2 N (UBE2N; P61089), NADH 

dehydrogenase [ubiquinone] iron-sulfur protein 8 (NDUFS8; Q8K3J1), histidine triad nucleotide-binding 

protein 1 (HINT1; P70349), glutamine synthetase (GLUL; P15105), and glutathione S-transferase Mu 1 

(GSTM1; P10649). None showed a significant quantitative change.  

We detected only two proteins referred to by Ahmed et al. (Ahmed et al., 2017; 2015) [superoxide 

dismutase (SOD1; P08228) and glial fibrillary acidic protein, astrocyte (GFAP; P03995)], and two of the 

proteins identified by Fernandez et al. (Fernandez et al., 2009) [alpha enolase (ENO1; P17182) and elongation 

factor 1-alpha (EEF1A1; P10126)]. We did not detect quantitative changes in hippocampal or cerebellar levels 

of several other proteins reported by other investigators, including phospholipase C-beta (Ruiz de Azúa et al., 

2001), G protein-activated inward rectifier potassium channel 2 (Harashima et al., 2006), or kinesin (Roberson 

et al., 2008). Each of these was reported to have altered levels in Ts65Dn mice. Thus, our study adds 

significantly to the number of proteins in cerebellum and hippocampus that do not change in level due to 

trisomy in Ts65Dn mice. Our results do not address changes in less abundant proteins (e.g., transcription 
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factors) that may play a significant role in the phenotype of Ts65Dn mice and individuals with DS. Indeed, such 

changes have been observed.   

4.2 Ploidy 

Our results show that only five proteins are significantly different comparing Ts65Dn samples versus 

controls. Three proteins (CRYZL1, EZR, and SOD1) show increased abundance in Ts65Dn, while two proteins 

(PHB and MAPRE3) are significantly elevated in disomic samples. CRYZL1, EZR, and SOD1 are all trisomic 

in Ts65Dn mice, but only CRYZL1 and SOD1 are Hsa21 homologs. One other Hsa21 homolog, CBR1, was 

identified, but it is not significantly different in disomic versus trisomic samples. EZR is located on Mmu17, 

and became trisomic due to the nature of the translocation which defines the Ts65Dn mouse. 

Ezrin (EZR), along with Radixin and Moesin, is a member of the ERM protein family. Our results show 

that it is elevated by ~1.5 to 2-fold in hippocampus, and mildly elevated in trisomic samples. Active ERMs are 

concentrated asymmetrically in neocortical growth cones. They are rapidly (and transiently) inactivated by 

SEMA3A, and they are required for SEMA3A mediated growth cone collapse and guidance (Mintz et al., 

2008). Ezrin is a cytoplasmic peripheral membrane protein which can interact with the actin cytoskeleton. The 

FERM domain of Ezrin can bind to the juxtamembrane region of L1, and this binding may be responsible for 

retrograde movement of L1 which generates traction forces necessary for axon growth (Sakurai et al., 2008). 

Given the importance of Ezrin in these processes, its overexpression in Ts65Dn may meaningfully contribute to 

the Ts65Dn phenotype, which may have implications concerning its validity as a model of DS. Alternatively, 

given the high homology of the ERM proteins, it is possible that elevated levels of Ezrin might be compensated 

for by alteration in levels of Moesin and/or Radixin. 

4.3 Age 

We observed numerous differences in spot abundances when we compared samples from six-month-old 

mice to those from twelve-month-old mice. The functional networks and their component proteins are listed in 

Table 5, and the ClueGO network diagrams are available in the Supplementary Material (Supplementary Fig. 

S1). In disomic samples, only 27 proteins showed different levels due to age (p < 0.005), and they mapped to 
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three overview term functional groups: gluconeogenesis, hydro-lyase activity, and alcohol catabolic process. In 

trisomic samples, the 26 proteins that differed by age did not map to any functional networks. In contrast, the 69 

proteins that differed by age in cerebellum mapped to twelve functional groups. Many of these are important in 

energy and metabolism. Two groups, “RHO GTPases Activate WASPs and WAVEs” and “regulation of actin 

polymerization or depolymerization”, indicate that regulation of actin changes dramatically during aging in 

cerebellum. In hippocampus, 59 proteins were significantly different by age, and these mapped to eight 

functional groups. Several of these are important in neurobiology, including “opioid signalling”, “regulation of 

actin polymerization or depolymerization”, “mitochondrial protein complex”, and “CRMPs in Sema3A 

signaling”.   

Other studies have indicated similar changes due to aging. Ahmed et al. observed numerous changes in 

specific proteins involved in MAP kinase signaling, NMDA receptors, NUMB protein interactions, and the 

apoptosis pathway, and these changes were greater at 12 months than 6 months of age (Ahmed et al., 2017). 

Similarly, Dekker et al. recently demonstrated that aging affects monoamine neurotransmitters in Ts65Dn mice 

more than ploidy when mice aged 3 to 5.5 months were compared to 12 month old mice (Dekker et al., 2017). 

Differences in some protein families suggest that these alterations may be particularly significant for 

alterations seen in age.  One example is the collapsin response mediator proteins [CRMPs, also known as the 

dihydropyrimidinase-related (DPYSL) proteins] a family of cytosolic proteins originally identified via their 

involvement in SEMA3A signaling. The CRMPs are discussed in more detail below. 

4.4 Brain region 

As with age, we observed numerous differences in spot abundance when comparing cerebellum to 

hippocampus samples. The functional networks and their component proteins are listed in Table 6, and the 

ClueGO network diagrams are available in the Supplementary Material (Supplementary Fig. S2). In disomic 

samples, the 47 proteins that differ in abundance by region map to 7 functional groups, including “basigin 

interactions”, “RHO GTPases Activate WASPs and WAVEs”, “substantia nigra development”, “neurofilament 

cytoskeleton organization”, and “CRMPs in Sema3A signaling”. In trisomic samples, the 60 proteins that differ 

in abundance by region map to four functional groups, including “basigin interactions”, “synaptic vesicle 
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transport”, and “CRMPs in Sema3A signaling”. In six-month samples, the 57 proteins that differ in abundance 

by region map to eight functional groups, including “Basigin interactions”, “regulation of actin polymerization 

or depolymerization”, “substantia nigra development”, “regulation of axon extension”, and “synaptic vesicle 

transport”. In twelve-month samples, the 93 proteins that differ in abundance by region map to fourteen 

functional groups, including “proteasome complex”, “CRMPs in Sema3A signaling”, “regulation of actin 

polymerization or depolymerization”, “substantia nigra development”, “axon part”, and “neuron projection 

terminus”.  

4.5 CRMPs 

 There are 5 CRMP family members: CRMP1 (DPYSL1), CRMP2 (DPYSL2), CRMP3 (DPYSL4), 

CRMP4 (DPYSL3), and CRMP5 (DPYSL5). These proteins form homo- and hetero-tetramers and play 

important roles in neuronal migration, neuronal network formation, synapse formation, synaptic plasticity, and 

neuronal disease. They are extensively modified post-translationally via deamidation, oxidation, isoaspartyl 

conversion, O-glycosylation, and perhaps most importantly, phosphorylation. Crmp1 mutations have been 

associated with disruption in hippocampal development and other defects in brain development.  CRMP2, 

CRMP3, and CRMP4 may be important for proper development of several brain regions as well as normal 

dendritic spine morphology, which is defective in Ts65Dn mice. All the collapsin response mediator proteins 

have important roles in the hippocampus and this may be reflected in their increased abundance in hippocampus 

versus cerebellum (at twelve-months of age, see Supplementary Table S3). The CRMPs have recently been 

proposed as therapeutic targets for neurodegenerative disease  (Nagai et al., 2016). 

CRMP2 is widely expressed in neuronal tissues, including brain, spinal cord, etc. and is involved in an 

ever-expanding range of functions, including semaphorin signaling, neurite growth/retraction, axon transport, 

protein endocytosis, vesicle recycling, microtubule dynamics, synaptic assembly, calcium channel regulation, 

and neurotransmitter release (Khanna et al., 2012). CRMP2 has multiple phosphorylation sites, and CRMP2 

phosphorylation is essential for SEMA3A mediated growth cone collapse. Specifically, phosphorylation by 

GSK-3β and/or Rho kinase (ROCK) lowers the ability of CRMP2 to interact with tubulin, leading to axonal 

growth arrest and growth cone collapse (Yoshimura et al., 2005) (Arimura et al., 2005). In addition, SEMA3A 
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growth cone collapse is impaired in CRMP2 mouse mutants lacking Cdk5, GSK-3β, or Fyn phosphorylation 

sites (Uchida et al., 2005). Phosphorylation of both CRMP2 and Tau proteins is mediated by Cdk5 and GSK-3β. 

Β-amyloid induced oxidative stress leads to increased activity of both Cdk5 and GSK-3β, which may lead to 

CRMP2 and Tau hyperphosphorylation resulting in impaired neuronal communication, loss of synapses, and 

formation of neurofibrillary tangles. In transgenic mouse models of AD, CRMP2 binds to phosphorylated and 

non-phosphorylated forms of Tau, and hyperphosphorylated CRMP2 accumulates in the brains of these animals 

(Cole et al., 2007). 

4.6 Conclusions 

Our results show minimal differences in protein abundances (as measured by 2D DiGE peak volumes) 

when we compared disomic and trisomic groups. Contrastingly, we identified numerous quantitative differences 

associated with age (six versus twelve-month) and brain region (cerebellum versus hippocampus). No 

proteomic method is ideal and in practice, all existing approaches have (serious) limitations. For example, 1) 

coverage of the proteome is limited (i.e., only a subset of all proteins can be detected and quantified), 2) 

precision can be poor [i.e., errors associated with quantitative measurements may be larger than biological 

differences (Földi et al., 2011)] and 3) information on variants is often lost. The approach used in this study, 2D 

DiGE, is limited in its ability to comprehensively cover the proteome - only about 2,000 protein spots are seen; 

however, there are two important strengths of this approach. First, 2D DiGE is precise (i.e., even subtle 

quantitative differences can be determined) and second, because proteins are intact during the quantitative 

analysis, variants can be detected and independently quantified. Both these attributes are important in this study 

(Westermeier, 2016). When combined with peptide mass fingerprinting by MALDI TOF-MS, protein IDs can 

be obtained. Although alternative strategies are available (for example LC-MS/MS of each digested protein), 

mass fingerprinting has been demonstrated to be a reliable and expedient approach to protein identification 

following 2D gel separation. 

Our results support the hypothesis that mechanisms exist that maintain homeostasis in trisomic Ts65Dn 

mice, and compensate for the increased dosage of trisomic genes. This is reasonable, given the degree of 

trisomy in Ts65Dn mice (~150 genes), and their viability. One such mechanism may be protein degradation via 
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proteolysis. Others hypothesize that cells activate protein folding and proteolytic pathways to normalize protein 

stoichiometries (Pfau and Amon, 2012). Stingele et al. demonstrated that p62-dependent selective autophagy is 

activated in human trisomic and tetrasomic cells (Stingele et al., 2012). Nizetic and Groet discuss the 

observation that, although DS should, on the basis of various criteria, be a cancer-prone condition, solid tumors 

are in fact extremely rare in DS (Nizetic and Groet, 2012). It is possible that the mechanisms preventing solid 

tumor formation in DS may also act to correct protein imbalances due to the increased dosage of trisomic genes.  

Since differences between the disomic and trisomic proteomes are subtle in Ts65Dn mice, extra care is 

necessary in experimental design and interpretation of results to avoid artifacts due to age, tissue type, PMI, etc. 

It is possible that proteome differences in hippocampus and cerebellum samples from individuals with DS 

versus controls have a similar degree of subtlety. Certain variables cannot be properly controlled in studies on 

human tissue, illustrating the importance of mouse models. 

We observe pronounced differences based on age (six-month versus twelve-month), and brain region 

(cerebellum versus hippocampus). Many of these differences are in proteins involved in energy and metabolism, 

while some are specific to neurological processes such as neurotransmitter transport and synapse function. 

These and similar studies should be helpful in defining differences in brain regions and metabolic changes due 

to the aging process.  The data from this study is freely available, and we encourage additional analyses beyond 

the scope of this study. We welcome the development of hypotheses regarding DS, brain development and 

aging based on these findings. 
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