296 research outputs found

    Mott Insulator to Superfluid transition in Bose-Bose mixtures in a two-dimensional lattice

    Full text link
    We perform a numeric study (Worm algorithm Monte Carlo simulations) of ultracold two-component bosons in two-dimensional optical lattices. We study how the Mott insulator to superfluid transition is affected by the presence of a second superfluid bosonic species. We find that, at fixed interspecies interaction, the upper and lower boundaries of the Mott lobe are differently modified. The lower boundary is strongly renormalized even for relatively low filling factor of the second component and moderate (interspecies) interaction. The upper boundary, instead, is affected only for large enough filling of the second component. Whereas boundaries are renormalized we find evidence of polaron-like excitations. Our results are of interest for current experimental setups.Comment: 4 pages, 3 figures, accepted as PRA Rapid Communicatio

    Flank instability on Mount Etna: radon, radar interferometry and geodetic data from the south-western boundary of the unstable sector

    Get PDF
    Understanding Etnean flank instability is hampered by uncertainties over its western boundary. Accordingly, we combine soil radon emission, InSAR and EDM data to study the Ragalna fault system (RFS) on the SW flank of the volcano. Valuable synergy developed between our differing techniques, producing consistent results and serving as a model for other studies of partly obscured active faults. The RFS, limited in its surface expression, is revealed as a complex interlinked structure ~14 km long that extends from the edifice base towards the area of summit rifting, possibly linking north-eastwards to the Pernicana fault system (PFS) to define the unstable sector. Short-term deformation rates on the RFS from InSAR data reach ~7 mm a-1 in the satellite line of sight on the upslope segment and ~5 mm a-1 on the prominent central segment. While combining this with EDM data confirms the central segment of the RFS as a dextral transtensive structure, with strike-slip and dip-slip components of ~3.4 and ~3.7 mm a-1 respectively. We measured thoron (220Rn, half-life 56 secs) as well as radon and, probably because of its limited diffusion range, this appears a more sensitive but previously unexploited isotope for pinpointing active near-surface faults. Contrasting activity of the PFS and RFS reinforces proposals that the instability they bound is divided into at least three sub-sectors by intervening faults, while, in section, fault-associated basal detachments also form a nested pattern. Complex temporal and spatial movement interactions are expected between these structural components of the unstable sector

    Fatigue characterization of mechanical components in service

    Get PDF
    The quickly identify of fatigue limit of a mechanical component with good approximation is currently a significant practical problem not yet resolved in a satisfactory way. Generally, for a mechanical component, the fatigue strength reduction factor ( ? i) is difficult to evaluate especially when it is in service. In this paper, the procedures for crack paths individuation and consequently damage evaluation (adopted in laboratory for stressed specimens with planned load histories) are applied to mechanical components, already failed during service. The energy parameters, proposed by the authors for the evaluation of the fatigue behavior of the materials [1-5], are defined on specimens derived from a flange bolts. The flange connecting pipes at high temperature and pressure. Due to the loss of the seal, the bolts have been subjected to a hot flow steam addition to the normal stress. The numerical analysis coupled experimental analysis (measurement of surface temperature during static and dynamic tests of specimens taken from damaged tie rods), has helped to determine the causes of failure of the tie rods. The determination of an energy parameter for the evaluation of the damage showed that factors related to the heat release of the material (loaded) may also help to understand the causes of failure of mechanical components

    thermographic analysis during tensile tests and fatigue assessment of s355 steel

    Get PDF
    Abstract Structural S355 steel is widely applied in various sectors. Fatigue properties are of fundamental importance and extremely time consuming to be assessed. The aim of this research activity is to apply the Static Thermographic Method during tensile tests and correlate the temperature trend to the fatigue properties of the same steel. The Digital Image Correlation (DIC) and Infrared Thermography (IR) techniques have been used during all static tests. The Digital Image Correlation technique allowed the detection of displacements and strain, and so the evaluation of the mechanical properties of the material. Traditional fatigue tests were also performed in order to evaluate the stress-number of cycles to failure curve of the same steel. The value of the fatigue limit, obtained by the traditional procedure, was compared with the values predicted by means of the Static Thermographic Method (STM) obtained from tensile tests. The predicted values are in good agreement with the experimental values of fatigue life

    Direct evidence that twisted flux tube emergence creates solar active regions

    Get PDF
    The magnetic nature of the formation of solar active regions lies at the heart of understanding solar activity and, in particular, solar eruptions. A widespread model, used in many theoretical studies, simulations and the interpretation of observations, is that the basic structure of an active region is created by the emergence of a large tube of pre-twisted magnetic field. Despite plausible reasons and the availability of various proxies suggesting the accuracy of this model, there has not yet been a methodology that can clearly and directly identify the emergence of large pre-twisted magnetic flux tubes. Here, we present a clear signature of the emergence of pre-twisted magnetic flux tubes by investigating a robust topological quantity, called magnetic winding, in solar observations. This quantity detects the emerging magnetic topology despite the significant deformation experienced by the emerging magnetic field. Magnetic winding complements existing measures, such as magnetic helicity, by providing distinct information about field line topology, thus allowing for the direct identification of emerging twisted magnetic flux tubes

    fatigue life evaluation of car front halfshaft

    Get PDF
    Abstract The present paper is the result of the collaboration between the Engineering Department of Messina University and the car company Maserati S.p.A. The aim of this paper is to determine the T-N torsion fatigue curve at R= -1 of the mechanical system "front halfshaft" of an existing car. In particular, experimental fatigue tests were carried out in the laboratories of the Engineering Department of the University of Messina. Torsion fatigue tests of the entire mechanical system were carried out on 15 different front halfshafts. Evaluations of the crack propagation and of failure analysis were made to determine the causes of breakage. In conclusion, the T-N fatigue curve of the mechanical system "front halfshaft" has been obtained

    M13 phages uptake of gold nanoparticles for radio-and thermal-therapy and contrast imaging improvement

    Get PDF
    The presented work deals with the uptake of gold nanoparticles (Au NPs) by M13 phages in solutions. In particular, the Au NPs uptake modalities and their localization in the filamentous phages are evaluated and measured. Gold spherical nanoparticles (with an average diameter of the order of 10 nm) are obtained by laser ablation in water with a sodium citrated surfactant. The interest of such application comes from the possibility to employ living biological structures to transport heavy metallic nanoparticles inside cells of tumoral tissues. Indeed, phages have the capability to introduce Au NPs in the proximity to the cell nucleus, increasing the efficiency of DNA destruction in the tumoral cells by employing low doses of ionizing radiation during radiotherapy and hyperthermia treatments. Several analyses and microscopy characterizations of the prepared phages samples embedding gold nanoparticles are presented, demonstrating that the presence of Au NPs increases the phages imaging contrast

    Antimicrobial effect and cytotoxic evaluation of MG-doped hydroxyapatite functionalized with au-nano rods

    Get PDF
    Hydroxyapatite (HA) is the main inorganic mineral that constitutes bone matrix and represents the most used biomaterial for bone regeneration. Over the years, it has been demonstrated that HA exhibits good biocompatibility, osteoconductivity, and osteoinductivity both in vitro and in vivo, and can be prepared by synthetic and natural sources via easy fabrication strategies. However, its low antibacterial property and its fragile nature restricts its usage for bone graft applications. In this study we functionalized a MgHA scaffold with gold nanorods (AuNRs) and evaluated its antibacterial effect against S. aureus and E. coli in both suspension and adhesion and its cytotoxicity over time (1 to 24 days). Results show that the AuNRs nano-functionalization improves the antibacterial activity with 100% bacterial reduction after 24 h. The toxicity study, however, indicates a 4.38-fold cell number decrease at 24 days. Although further optimization on nano-functionalization process are needed for cytotoxicity, these data indicated that Au-NRs nano-functionalization is a very promising method for improving the antibacterial properties of HA

    Fatigue assessment by energy approach during tensile tests on AISI 304 steel

    Get PDF
    Estimation of the fatigue limit for steel ductile materials using non-destructive methods is a topic of great interest to researchers today. In recent years, the method adopted has implemented infrared sensors to detect the surface temperature and correlate it with the fatigue limit. In previous paper, a new energy approach was proposed to investigate the fatigue limit during tensile test. The numerical procedure proposed by Chrysochoos is adopted to clean infrared images and applied to analyse the surface heat sources during tensile test. AISI 304 specimens with rectangular cross-sections are tested. Moreover fatigue tests at increasing loads were carried out on steel by a stepwise succession, applied to the same specimen, for applying the thermographic method. The predictions of the fatigue limit, obtained by the analysis of the energy evolution during the static tests, were compared with the predictions obtained applying the thermographic method during fatigue tests

    Quantifying Properties of Photospheric Magnetic Cancellations in the Quiet Sun Internetwork

    Get PDF
    We analyzed spectropolarimetric data from the Swedish 1-meter Solar Telescope to investigate physical properties of small-scale magnetic cancellations in the quiet Sun photosphere. Specifically, we looked at the full Stokes polarization profiles along the Fe I 557.6 nm and of the Fe I 630.1 nm lines measured by CRisp Imaging SpectroPolarimeter (CRISP) to study temporal evolution of the line-of-sight (LOS) magnetic field during 42.5 minutes of quiet Sun evolution. From this magnetogram sequence, we visually identified 38 cancellation events. We then used Yet Another Feature Tracking Algorithm (YAFTA) to characterize physical properties of these magnetic cancellations. We found on average 1.6×10161.6\times10^{16} Mx of magnetic flux cancelled in each event with an average cancellation rate of 3.8×10143.8\times10^{14} Mx s−1^{-1}. The derived cancelled flux is associated with strong downflows, with an average speed of VLOS≈1.1V_\mathrm{LOS}\approx1.1 km s−1^{-1}. Our results show that the average lifetime of each event is 9.29.2 minutes with an average 44.8%44.8\% of initial magnetic flux being cancelled. Our estimates of magnetic fluxes provide a lower limit since studied magnetic cancellation events have magnetic field values that are very close to the instrument noise level. We observed no horizontal magnetic fields at the cancellation sites and therefore can not conclude whether the events are associated structures that could cause magnetic reconnection.Comment: 19 pages, 18 figures, 2 tables, accepted into ApJ on 06/08/202
    • …
    corecore