175 research outputs found

    The Comic Book Conundrum: Defining Comic Books as a Literary Genre

    Get PDF
    Abstract: Since the early 1900s, the world has seen the emergence, growth, and now boom of a new literary genre: the comic book. The comic book industry has existed for nearly a hundred years now as a subculture of American literature and popular culture. Initially gaining significant popularity during World War II, the comic book industry introduced the first “superhero” comics in the late 1930s and early 1940s. In the decades to follow, the comic book industry would achieve significant milestones as they developed alongside the views and values of the American people. As comic books began to expand in both length and depth, these new works of literature have established themselves as a new genre of scholarly literature. Surrounding stigma and criticisms about the substance and form of comic books has kept them from receiving much attention in the academic setting. However, following the research done by numerous comic book scholars and critics, this thesis analyzes three main aspects of comic books as defined by the standards of traditional literary studies: form, content, and style. The analysis of these aspects and how they connect to the views of American culture as well as how they compare to other established literary genres will attempt to credit comic books as unique works of literature that should be considered independent of other genres

    Designing Contour Weep Berms to Reduce Agricultural Nonpoint Source Pollution

    Get PDF
    Nonpoint source pollution (NPS) of surface waters is a significant issue in agricultural lands, and best management practices (BMPs) are often used to reduce these impacts. Since the effectiveness of a BMP depends on a large number of widely varying factors, it is important to continue to develop BMPs in order to provide designers with more tools to use to maximize NPS removal. The contour weep berm is a new structural BMP constructed out of earth and subsequently vegetated. It is a linear BMP that is used in combination with a down-gradient vegetated filter strip or forested riparian buffer. Preliminary field evaluations of the contour weep berm indicate it is effective at reducing runoff volumes and peaks, promoting infiltration, and reducing sediment concentrations in runoff. Procedures for designing a contour weep berm are presented along with a design example. Linear BMPs, such as the contour weep berm, can provide producers with another means of effectively controlling NPS

    Hydrochloric Acid Infusion for the Treatment of Metabolic Alkalosis in Surgical Intensive Care Unit Patients

    Get PDF
    Background: Older reports of use of hydrochloric acid (HCl) infusions for treatment of metabolic alkalosis document variable dosing strategies and risk. Objectives: This study sought to characterize use of HCl infusions in surgical intensive care unit patients for the treatment of metabolic alkalosis. Methods: This retrospective review included patients who received a HCl infusion for \u3e8 hours. The primary end point was to evaluate the utility of common acid-base equations for predicting HCl dose requirements. Secondary end points evaluated adverse effects, efficacy, duration of therapy, and total HCl dose needed to correct metabolic alkalosis. Data on demographics, potential causes of metabolic alkalosis, fluid volume, and duration of diuretics as well as laboratory data were collected. Results: A total of 30 patients were included, and the average HCl infusion rate was 10.5 ± 3.7 mEq/h for an average of 29 ± 14.6 hours. Metabolic alkalosis was primarily diuretic-induced (n = 26). Efficacy was characterized by reduction in the median total serum CO2 from 34 to 27 mM/L (P \u3c 0.001). The change in chloride ion deficit and change in apparent strong ion difference (SIDa) were not correlated with total HCl administered. There were no documented serious adverse effects related to HCl infusions. Conclusion: HCl was effective for treating metabolic alkalosis, and no serious adverse events were seen. In this clinical setting, the baseline chloride ion deficit and SIDa were not useful for prediction of total HCl dose requirement, and serial monitoring of response is recommended

    Combined 624-nm and 850-nm illumination at low rates leads to enhanced inhibition of Candida albicans

    Get PDF
    Background: To determine whether combinations of red and infrared light could improve inhibition of Candida albicans and whether combining wavelengths and altering rate of energy delivery could prevent the formation of resistance to light energy.Methods: C. albicans was tested because of the common appearance in human skin and mucous membrane infections. The organism was treated in vitro with a combination of 624-nm (red) and 850-nm (infrared) light emitted from a supraluminous diode (SLD) array. Doses of 9, and 30 J/cm2 were used. Rate of energy delivery was also manipulated. Colony counts were performed and compared to untreated controls using Student t tests and one-way ANOVA with Tukey post hoc analysis.Results: The combination of 624 and 850-nm light energy at 30 J/cm2 was an effective (p ≀ 0.05) inhibitor of C. albicans across all seven stages of the experiment. The combination of 624 and 850-nm wavelengths produced a maximum kill rate [{control – treated / control} X 100] of 76.24% and an average kill rate of 54% across the seven stages of the experiment.Conclusions: A Combination of 624-nm and 850-nm light from an SLD array can inhibit the growth of C. albicans in vitro. Altering delivery rate of the energy can delay resistance formation in this organism.

    E-Leadership or “How to Be Boss in Instant Messaging?” The Role of Nonverbal Communication

    Get PDF
    Doing leadership in the virtual realm has now become a routine part of many leaders’ daily work, yet our understanding of how leadership is enacted in mediated contexts—especially in text-only channels—is very limited. By applying micro-level analysis to naturally occurring instant message conversations, this article exposes the strategies leaders employ to achieve a range of complex communication goals: to get the work done while fostering informality and collegiality and creating the sense of a real—and not virtual—collaboration between team members. The findings further our understanding in two domains: They provide empirical grounding for e-leadership theories by exposing practices from real-life interactions, and they contribute to discursive leadership literature by addressing nonverbal communication practices. The findings of the article could form the basis for management and leadership training by drawing attention to the linguistic and semiotic resources digital leaders have at their disposal in virtual work environments

    Integrating Human Indoor Air Pollutant Exposure within Life Cycle Impact Assessment

    Get PDF
    Neglecting health effects from indoor pollutant emissions and exposure, as currently done in Life Cycle Assessment (LCA), may result in product or process optimizations at the expense of workers’ or consumers’ health. To close this gap, methods for considering indoor exposure to chemicals are needed to complement the methods for outdoor human exposure assessment already in use. This paper summarizes the work of an international expert group on the integration of human indoor and outdoor exposure in LCA, within the UNEP/SETAC Life Cycle Initiative. A new methodological framework is proposed for a general procedure to include human-health effects from indoor exposure in LCA. Exposure models from occupational hygiene and household indoor air quality studies and practices are critically reviewed and recommendations are provided on the appropriateness of various model alternatives in the context of LCA. A single-compartment box model is recommended for use as a default in LCA, enabling one to screen occupational and household exposures consistent with the existing models to assess outdoor emission in a multimedia environment. An initial set of model parameter values was collected. The comparison between indoor and outdoor human exposure per unit of emission shows that for many pollutants, intake per unit of indoor emission may be several orders of magnitude higher than for outdoor emissions. It is concluded that indoor exposure should be routinely addressed within LCA

    Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 infection

    Get PDF
    Identification of full-length transmitted HIV-1 genomes could be instrumental in HIV-1 pathogenesis, microbicide, and vaccine research by enabling the direct analysis of those viruses actually responsible for productive clinical infection. We show in 12 acutely infected subjects (9 clade B and 3 clade C) that complete HIV-1 genomes of transmitted/founder viruses can be inferred by single genome amplification and sequencing of plasma virion RNA. This allowed for the molecular cloning and biological analysis of transmitted/founder viruses and a comprehensive genome-wide assessment of the genetic imprint left on the evolving virus quasispecies by a composite of host selection pressures. Transmitted viruses encoded intact canonical genes (gag-pol-vif-vpr-tat-rev-vpu-env-nef) and replicated efficiently in primary human CD4+ T lymphocytes but much less so in monocyte-derived macrophages. Transmitted viruses were CD4 and CCR5 tropic and demonstrated concealment of coreceptor binding surfaces of the envelope bridging sheet and variable loop 3. 2 mo after infection, transmitted/founder viruses in three subjects were nearly completely replaced by viruses differing at two to five highly selected genomic loci; by 12–20 mo, viruses exhibited concentrated mutations at 17–34 discrete locations. These findings reveal viral properties associated with mucosal HIV-1 transmission and a limited set of rapidly evolving adaptive mutations driven primarily, but not exclusively, by early cytotoxic T cell responses

    Integrated Multi-Parameter Exploration Footprints of the Canadian Malartic Disseminated Au, McArthur River-Millennium Unconformity U, and Highland Valley Porphyry Cu Deposits: Preliminary Results from the NSERC-CMIC Mineral Exploration Footprints Research Network

    Get PDF
    Mineral exploration in Canada is increasingly focused on concealed and deeply buried targets, requiring more effective tools to detect large-scale ore-forming systems and to vector from their most distal margins to their high grade cores. A new generation of ore system models is required to achieve this. The Mineral Exploration Footprints Research Network is a consortium of 70 faculty, research associates, and students from 20 Canadian universities working with 30 mining, mineral exploration, and mining service providers to develop new approaches to ore system modelling based on more effective integration and visualization of multi-parameter geological-structural-mineralogical-lithogeochemical-petrophysical-geophysical exploration data. The Network is developing the next generation ore system models and exploration strategies at three sites based on integrated data visualization using self-consistent 3D Common Earth Models and geostatistical/machine learning technologies. Thus far over 60 footprint components and vectors have been identified at the Canadian Malartic stockwork-disseminated Au deposit, 20–30 at the McArthur-Millennium unconformity U deposits, and over 20 in the Highland Valley porphyry Cu system. For the first time, these are being assembled into comprehensive models that will serve as landmark case studies for data integration and analysis in the today’s challenging exploration environment
    • 

    corecore