466 research outputs found

    PO-040 Characterisation of cdk12 knocked out ovarian cancer cell lines

    Get PDF
    Introduction While cyclin-dependent kinases (CDKs) have a key role in promoting/controlling transition between the different phases of the cell cycle, transcriptional kinases, like CDK12, are mainly involved in gene transcription. CDK12 has been shown to regulate the expression of genes involved in DNA damage and to maintain genomic stability. Impairment of CDK12 activity is synergic with PARP inhibitor and cisplatin treatments in different cellular systems. We here aimed to generate ovarian cancer cell lines knocked out (KO) for CDK12 to understand its role in ovarian cancer and in response to chemotherapy. Material and methods A2780 and SKOV3 CDK12 KO clones were generated with CRISPR/Cas9 technology. Cell cycle analysis was evaluated by standard flow cytometric methods and DNA repair genes levels by Real Time PCR. Caspase 3 activity was measured to detect apoptosis with a luminescence-based assay. Cytotoxicity experiments were performed treating cells with different drug concentrations and evaluating cell survival after 72 hours by MTS assay. For in vivo studies 7.5 millions of cells were transplanted subcutaneously in nude mice and animals were monitored for tumour appearance and growth. Results and discussions We obtained 2 CDK12 KO ovarian cancer clones, A2780 KO and SKOV3 KO, out of more than 300 clones screened. The cell growth of both A2780 KO and SKOV3 KO cells is slower than the wild type (WT) cells, they have a less clonogenic ability and a tetraploid DNA content. Both CDK12 KO clones have a higher basal caspase activity than the WT cell lines, indicative of higher basal induction of apoptosis, while no increase in autophagy or senescence is observed. Both CDK12 KO clones show a decreased expression in BRCA1 and FANCD2 DNA repair genes than the WT cells. Cytotoxic experiments with anticancer agents with different mechanism of action show that both KO clones are less sensitive to ATM, CHK1 and WEE1 inhibitors treatment as compared to WT cells, while platinum and PARP inhibitors show similar cytotoxic activity in KO and WT cells. Interestingly enough, when KO clones were transplanted in nude mice, no tumour take was observed. Conclusion We were able to obtain CDK12 KO cells. We think that these models could help in disclosing new roles of CDK12 in ovarian carcinoma and may represent a useful tool to study new combination therapies for tumours with CDK12 mutations

    The impact of the LHC Z-boson transverse momentum data on PDF determinations

    Get PDF
    The LHC has recently released precise measurements of the transverse momentum distribution of the Z-boson that provide a unique constraint on the structure of the proton. Theoretical developments now allow the prediction of these observables through next-to-next-to-leading order (NNLO) in perturbative QCD. In this work we study the impact of incorporating these latest advances into a determination of parton distribution functions (PDFs) through NNLO including the recent ATLAS and CMS 7 TeV and 8 TeV pTZ data. We investigate the consistency of these measurements in a global fit to the available data and quantify the impact of including the pTZ distributions on the PDFs. The inclusion of these new data sets significantly reduces the uncertainties on select parton distributions and the corresponding parton-parton luminosities. In particular, we find that the pTZ data ultimately leads to a reduction of the PDF uncertainty on the gluon-fusion and vector-boson fusion Higgs production cross sections by about 30%, while keeping the central values nearly unchanged.This research was supported in part by the National Science Foundation under Grant No. NSF PHY11-25915 to the Kavli Institute of Theoretical Physics in Santa Barbara. R. B. is supported by the DOE contract DE-AC02-06CH11357. F. P. is supported by the DOE grants DE-FG02- 91ER40684 and DE-AC02-06CH11357. M. U. is supported by a Royal Society Dorothy Hodgkin Research Fellowship and partially supported by the STFC grant ST/L000385/1. A. G. is supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie grant agreement No 659128 - NEXTGENPDF. This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357

    The impact of heavy quark mass effects in the NNPDF global analysis

    Get PDF
    We discuss the implementation of the FONLL general-mass scheme for heavy quarks in deep-inelastic scattering in the FastKernel framework, used in the NNPDF series of global PDF analysis. We present the general features of FONLL and benchmark the accuracy of its implementation in FastKernel comparing with the Les Houches heavy quark benchmark tables. We then show preliminary results of the NNPDF2.1 analysis, in which heavy quark mass effects are included following the FONLL-A GM scheme.Comment: 5 pages, 3 figures; to appear in the proceedings of DIS 2010, Firenz

    Progress in the Neural Network Determination of Polarized Parton Distributions

    Full text link
    We review recent progress towards a determination of a set of polarized parton distributions from a global set of deep-inelastic scattering data based on the NNPDF methodology, in analogy with the unpolarized case. This method is designed to provide a faithful and statistically sound representation of parton distributions and their uncertainties. We show how the FastKernel method provides a fast and accurate method for solving the polarized DGLAP equations. We discuss the polarized PDF parametrizations and the physical constraints which can be imposed. Preliminary results suggest that the uncertainty on polarized PDFs, most notably the gluon, has been underestimated in previous studies.Comment: 5 pages, 2 figures; to appear in the proceedings of DIS 2010, Firenz

    DG-CST (Disease Gene Conserved Sequence Tags), a database of human�mouse conserved elements associated to disease genes

    Get PDF
    The identification and study of evolutionarily conserved genomic sequences that surround disease-related genes is a valuable tool to gain insight into the functional role of these genes and to better elucidate the pathogenetic mechanisms of disease. We created the DG-CST (Disease Gene Conserved Sequence Tags) database for the identification and detailed annotation of human–mouse conserved genomic sequences that are localized within or in the vicinity of human disease-related genes. CSTs are defined as sequences that show at least 70% identity between human and mouse over a length of at least 100 bp. The database contains CST data relative to over 1088 genes responsible for monogenetic human genetic diseases or involved in the susceptibility to multifactorial/polygenic diseases. DG-CST is accessible via the internet at http://dgcst.ceinge.unina.it/ and may be searched using both simple and complex queries. A graphic browser allows direct visualization of the CSTs and related annotations within the context of the relative gene and its transcripts

    Non-perturbative effects and the resummed Higgs transverse momentum distribution at the LHC

    Full text link
    We investigate the form of the non-perturbative parameterization in both the impact parameter (b) space and transverse momentum (p_T) space resummation formalisms for the transverse momentum distribution of single massive bosons produced at hadron colliders. We propose to analyse data on Upsilon hadroproduction as a means of studying the non-perturbative contribution in processes with two gluons in the initial state. We also discuss the theoretical errors on the resummed Higgs transverse momentum distribution at the LHC arising from the non-perturbative contribution.Comment: 22 pages, 10 figure

    Joint statement on the role of respiratory rehabilitation in the COVID-19 crisis: the Italian position paper.

    Get PDF
    Due to an exponential growth of the number of subjects affected by coronavirus disease 2019 (COVID-19), the entire Italian healthcare system had to respond promptly and in a very short time with the need of semi-intensive and intensive care units. Moreover, trained dedicated COVID-19 teams consisting of physicians coming from different specialties (intensivists or pneumologists and infectivologists), while respiratory therapists and nurses have been recruited to work on and on with rest. However, due to still limited and evolving knowledge of COVID-19 disease, there are little recommendations for need in respiratory rehabilitation and physiotherapy interventions. The presentation of this manuscript is the result of a consensus promoted by the Italian societies of respiratory health care professionals who contacted pulmonologists directly involved in the treatment and rehabilitation of COVID-19. The aim was to formulate the more proper and common suggestions to be applied in different hospital settings in offering rehabilitative programs and physiotherapy workforce planning in COVID-19 patients. Two main areas of intervention were identified: organization and treatment, which were described in this paper to face with the emergency

    TiO2 Nanocrystals Decorated CVD Graphene for Electroanalytical Sensing

    Get PDF
    In this work, the manufacturing and characterization of an optically transparent and UV-light photoactive anode, formed of monolayer graphene grown by chemical vapor deposition (CVD) and decorated with a close packed multilayered nanostructured layout of colloidal TiO2 nanocrystals (NCs), are reported. The hybrid material has been prepared by a facile solution-based procedure, which relays on soaking the CVD graphene in a solution of 1-pyrene butyric acid (PBA) surface coated TiO2 NCs, achieved upon implementation of a capping exchange process for displacing the pristine organic ligand deriving from the colloidal synthesis. Pyrene undergoes \u3c0-\u3c0 stacking interactions, anchoring the NCs to the platform with retention of the NC geometry and composition. The NCs immobilize onto the graphene platform with preservation of its aromatic structure and the resulting hybrid has been found optically transparent in the visible spectral range. (Photo)electrochemical investigation shows that the composite material has a promising sensitivity for selectively detecting dopamine and norepinephrine and, concomitantly, exhibits a (photo)electric activity higher than that of bare graphene. Thus, the achieved hybrid material results interesting for the manufacturing of photo-active components to integrate in photo-renewable sensor elements along with photodetectors and solar cells
    corecore